{ "cells": [ { "cell_type": "markdown", "execution_count": null, "id": "7a4792f4-64c4-4e9e-8b85-fa9db6528669", "metadata": { "tags": [] }, "source": [ "# Série2 : Correction \n", " ## Exercice 1: \n", "\n", "Nous avons à notre disposition les données d'échec ou de réussite de l'examen de cette matière de 2020. Nous allons nous intérésser en particulier à deux variables binaires de ces données:\n", "- La section: **S** $\\in\\{\\text{GM},\\text{EL}\\}$\n", "- Le succes à l'examen: **A** $\\in\\{0,1\\}$\n", "\n", "Dans le cadre des probabilités conditionnelles, avec deux variables binaires, une erreur qui revient souvent est de penser que:\n", "\\begin{equation*} \\mathbb{P}\\left(\\textbf{A} = 1 | \\textbf{S} = \\text{GM}\\right) + \\mathbb{P}\\left(\\textbf{A} = 1 | \\textbf{S} = \\text{EL}\\right) = 1 \\end{equation*}\n", "Néanmoins, cela est généralement faux. Nous allons donc nous appliquer à montrer que cela est faux dans notre cas, ainsi que de voir quel serait la version correcte de cette équation." ] }, { "cell_type": "code", "execution_count": null, "id": "aaf4ca73-3a40-46f9-9061-bfa0484e5e5e", "metadata": { "tags": [] }, "outputs": [], "source": [ "library(dplyr)\n", "\n", "data <- read.csv(\"Success_ProbaStat.csv\")" ] }, { "cell_type": "markdown", "execution_count": null, "id": "6926d7d4-9a32-4b3e-a3cc-1850307c6bf9", "metadata": {}, "source": [ "1\\) Synthétiser ces données de façon à avoir le nombre d'échec ou de réussite par section." ] }, { "cell_type": "code", "execution_count": null, "id": "1caec49b-584a-477e-b520-9892466503c2", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Section | Succes | n | prop |
---|---|---|---|
<chr> | <int> | <int> | <dbl> |
EL | 0 | 11 | 0.04526749 |
EL | 1 | 38 | 0.15637860 |
GM | 0 | 32 | 0.13168724 |
GM | 1 | 162 | 0.66666667 |
1-\\frac{2p}{3}\\}\\}}\\end{equation*} \n", "\n", "On pourrait encore en envisager une infinité, le point important est la mesure (la taille) de l'intervalle sur lequel la fonction indicatrice vaut $1$ soit égal à $p$.\n" ] }, { "cell_type": "markdown", "execution_count": null, "id": "181ae162-997f-48b9-9c2c-883c520df4fd", "metadata": {}, "source": [ "2\\) En utilisant la fonction ```bern```, écrire une fonction ```geom``` qui simule la génération d'une variable aléatoire $S = \\min\\left\\{{i\\in\\mathbb{N} | X_i = 1}\\right\\}$, où $X_i \\sim Bern(p)$." ] }, { "cell_type": "code", "execution_count": null, "id": "4f80a109-6d5b-4668-a8d0-5ec8e4089e7f", "metadata": { "tags": [] }, "outputs": [], "source": [ "geom <- function(p){\n", " if (p<1e-06){\n", " stop(\"La probabilité de succès doit être supérieure à zéro.\")\n", " }\n", " \n", " \n", " S <- 1\n", " X <- bern(p,1)\n", " \n", " while (X != 1){\n", " S <- S + 1\n", " X <- bern(p,1)\n", " }\n", " S\n", " \n", "}" ] }, { "cell_type": "markdown", "execution_count": null, "id": "b0939f97-0f38-48cb-b602-de06681f2682", "metadata": {}, "source": [ "3\\) Nous allons maintenant estimer quelques probabilités liées à notre variable aléatoire $S$: \n", "a\\) Grâce à un plot et une valeure numérique, estimer la valeure de $\\mathbb{P}(S = 1)$ ($n = 10000$ devrait être suffisant pour une bonne estmination). \n", "\n", "**Solution**: \n", "Observe que la probabilité que notre estimation semble converger vers $p = 0.3$, qui est justement la vrai valeur de $\\mathbb{P}(S = 1)$ (pour $p = 0.3$).\n" ] }, { "cell_type": "code", "execution_count": null, "id": "5c4839fa-6099-4dd1-9092-21ad500dd3f3", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "'On estime donc cette probabilité par : 0.292500'" ], "text/latex": [ "'On estime donc cette probabilité par : 0.292500'" ], "text/markdown": [ "'On estime donc cette probabilité par : 0.292500'" ], "text/plain": [ "[1] \"On estime donc cette probabilité par : 0.292500\"" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2dB3gU5dqG3yQQeoJ0pIMISFWK\nKCLFQpFERNrhAIqAiGLBjqCADdv5LdhAEOUgVoqKgAoCiqiAiAjSQekwIAiWA4TMP+87u5vd\nScLufvtFdjLPfV3Z3Sk7+3zzzp2pO0smACBm6EwHACA/AJEA0ABEAkADEAkADUAkADQAkQDQ\nAEQCQAMQCQAN5GuRPr6+dkqJJte+nXmmg4Qjg2h1bsNWE/0R+ZQWU7QVjf4dp89rDiOb5HpX\nfxDouTf1UXk+ObFrw2KlG9zw+ekmv2f+b/aLyy46FXW2M0Q+FunXlr6K0vlrznSWMIQXqUeF\nzhFNKY5EYi7/y9ezR7lj8mE1/UOuPpT75G+lxfaLb+mlqLOdIfKvSNsrEqX/9+t5L7Qnqn6a\nqsUD4UW6nFqGmcagBpOsx5VNmkT8qdG/w08YkUqvZha9aFlzj91vDj3PT7+UppIjF29b9UFn\nona5bif8Xs4vktk1ZXfU4c4M+Vak4y0o+TX75awCdM2ZDRMOHSJdTk9E+anRv8NPGJEq+F79\nVZ+SDHnVtPif/HQNld5oD3qFaFIu799lWeYXaQndqRjxnybfivQi0Uz/64coaf+ZzBKW8CL1\nofQw04hDkcy3iRbx81K6TrrL0wj/oIupdU5v3n7nZQUpS6TMaqnHFDP+w+RXkTKqU7NAx3ai\nV3MZ71jkByKMiMaKYoJZhBfpWXokzDSyaXEi3DGKsCLl2pZIRfrBN+N70EJ+2kc00T9oZMmG\nOb15vr0HtTgwGr14+ozxQn4VaTnRrKyupYs38FPma93PSW01VF6bW6x6v16NCtTuv8U076Cy\nGfaoV9Kl/LS4a4XCtf/1jfRaS5XNTZ2K3m29PDG2buGK1+1aSg3ssYNHC5kgk/F/zVKKN3nk\nePZRAxy6tVahcl2/CiyYOYxki7SU5uYwwuJr6hSpdtn71vLeV5a/S6zdc7Kj/H17cSrc8BXT\nXNShVLHG/3dSxv/fuM41C9e4bNoJ0/mO082c6PIGi/QR0Wzr6c/kEnL07XgSdTFPz8EFCxa8\nFyTScroozDvihPwq0hNEB5399nWw/90VfYW7rGXleaJE7l7H3n0h4xxIojcsBUYl2qPez/+T\nLZG2lCe611optZG+FZ+xRQodLWSCFnva2gMv3JVtVD/fVpV+iS/aC2aOI9ki/Xn9wewj+I+P\n9TPN+xsUo/IN+gVEKteNKMka9NBLCRJpKI//Yx3fG9JOOd9xupkTXd5gkaxpbjV5NXO53X0Z\nUcevwq6y9wWJdKJwgaPhxo8L8qtIA6lEtn4dKPH+b36Z3YyIz2JsoUIFz/3sj6OTClNn0zyH\nbpZxXqTi1mL7CCXcuHTngjSip0wWqUKL+vMPmLy6Snl14/cPWouPiBQ6WugETfNCKv7C2q2T\nytN5Gc5RfRwuRUXGfbfq6aKJ9oKZ40jB55FCR3if6PYf9q0eSPSR6d9Q84tE1GdzxvK6lJhw\n2ZqMtS0owdpJPFWfKk/dsm/lLb7dx+B3nHbmRJU3INKRr7uQvQa6m0bZg9aWtYJV6Pv6L6et\nXbBI1r7Ux6cdOV7IryJdTY2cvazN7/f4+X+XUpNMWdgq/s7dD1Fp03yQKsjWRysaZFWyOI2X\nt9xExQwWiSrL+ZAllPg9P0+0RXKMFjpB8x0qsIq7lidYW2WOUX3cRYVklBUFZcHMeaQgkRwj\nDKA06WpAd5nZROrKQz4nasgbdetkp38z0VfyhrZ0v+l4x2lnTlR5Q84jVT5gz1T/mdkdNxSX\n/rVuyX0fK1Skm7OOT8Q1+VWkLpTt7Eg3amW/+JroW1lW5NyGtbQVMM31RF9ar39NoGWmOZoa\n2tsfvxeit0Uke4G51l48zZNVRSTHaKETNFtSX9/nNpjoHNVHCg23X9wgC2bOIwWJ5BihG7WX\nzsP7jpjZROLWmL/5DzIX430VY/Zs++29aZjpeMdpZ05UeYNESr35sPSpQUsCQ/+cf28z2SD8\n919mLoSINNp3wC/eya8iDaAUZ68G9KTvVWn6rywr30nXUllWzqfbrMcnqY7JwvgWGKvvcBHp\na+mq5z+E1E9EcozmmGAqvZv12Y5RbfbIMssslAUzx5GCRXKMMIGo1ZTt/vEcIu3hfv8j/r9g\nUUZ2+oU/Vz9fLLtIp5850eQNnJBdvcvfpwitNYM5PKNPEZJze92D1l601Dc4RKQXqIPpBvKr\nSGOIDmR1vTdseGZmYXrf19mMRmctbL5l5SmqZP17bSJb+w2DqttXRNrJI2Yk04f2BB4QkRyj\nhU5wr39RFByj2iwi8l1xsV0WzBxHChbJOcKowtaLst3ekFMtDpH2cT9LpJXyTp9Inw+7uKy8\n2ylSmJkTTd7ggw02f/rmXzDbm8l/p6HVg1jhGxYi0lS6wPneuCS/irSEaEZWV1u62DyVtay0\npPuyFjbfsrIjwSrseiqw13pdiSo18HOXiCRHAP+XKHv1Ju85NMg+WugErWXth6wAjlFtlhH5\nLs78XRbMHEcKFinbCHsnXlPGWoor8XZceJH+7EyU0ubGJxf9O5tIYWZONHmzi2QWop/l+fGu\nTwb6WTtsz5g5EyLSS3RZLqPFF/lVpONlqVHgOOuhwvSAadYPbL2UpdezLyuXWpsnD9nXD7QL\nOQoVEMna1vdt2l0nIjlGC52gtWj6rqw4uu+wc1SbA4GV1g+yYOY4UrBIOY6w8YXKVPFEJCKN\noCLT5GzZ9dk37cLMnCjy5iBSVd9BjmHUPNDPWr2PyundpkOkh+nfuYwWX+RXkcxxxCeEbB4i\nPrN+jX2q1TRXyFaFc1l5lapk1ra3gIb6r8079dwz24JE6kTXynNGLRHJMZpjgo3sczd8YPl2\n56g+zqK77RePy4KZ80hBIoWOcGLUqPX+9qyNRKTG5FtvdM0uUpiZE0XeHES60Hdy/BVKXO7v\n9w3xAYph5wSx0jcoRKTb/J8Z5+RbkY7VoSTfP9kPCshx4k98W3vH21L9jOzLysGC9BKV43P+\n5teUYK9Nnqfix4JE+ogSf+Tn1+3D347RHBN8npJlOV9d0NqzcozqYwQVlultT5UFM+eRgkRy\njFDZd231Qko4xFqMM08v0gW+ZXJV4GBD1jvCzJwo8uYg0q30sDz/UZZq+2w52pjKHovkYEN7\n+7B83JNvRTLXWdVu9/qyb99KJyojS8UVlPTgyl1zmhN9ZuawrFxFxfz//fpSwp2L9/84PIHG\nmEEimVfTWVO2rRmbVJYaZx/NMcGTdSn11fU736pMTY87R/VxpBQVfer7da+WTkyVE5w5jhR8\nQjZ0hMFUYPiKA3zKt43JWnQ/fuq0It1CxWccz9g0srA1YzIc7wg3cyLPm4NIs/1ndd9LpAJD\nJnyx/KMxlajAYjMXgkU6VSIhsmsczzT5VyRzfX3/v7pLf5Iee64IvQrGsay8ZQ3yXQ/zWw/f\nO4dwV5ZIB9tK38tG08XZR3NOcOP59sBqm7ON6sd/yc34lrJg5jhSsEihI/zuv+LnHP7cm4gK\ntj6tSIesT0soSNT5EaLUr0LfEW7mRJ43B5GOJJXy7a++W8Zfk7JTc6qZECzSGpcctMvPIpkZ\nb/eoWuSsC/sHThZmTux2TomLhtpficm2rPxRlC4MvPfd3vWK1u1hn4TJEsk8+VirYjXHnriN\nrso+WrYJHn+ic4Uylzz8V/ZRA/BFoKU7LTJb+i4CzWGk0K+ah4zw9/OtqhSq0f41uSx231Ul\nSvQ8/eHv3+5uWLR0x5nmH50Kl/ku9B3hZk7keXMQydq59F/Xevj5DlWLlGx89fhcT8eGijSO\nHs99xHgiP4uknb+O/Gm/6BJ8AhKEZZ7/wEvUnFck27XH8QlEioKnfBfw7S5I885wFHeRWafU\ncaU3fk+DNUfJKyBSFGxOpvv/MDNXn0+NM850FncxlaYove/6Qpv0BskzIFI0TE2kApWKEFXZ\ncKaTuI3Lqqmskn5OCve94LgBIkXFz/3rFa2VPu7Imc7hOjYXfkHhXd3qq20RngEgEvhHOKBy\nOmjX79pz5BUQCQANQCQANACRANAARAJAAxAJAA1AJAA0AJEA0ABEAkADEAkADUAkADQQm0hG\nOA6aJ8KOo8Khk3kyWcQVEFeIIO5vEClHEFdAXAEiKYO4AuIKEEkZxBUQV4BIyiCugLgCRFIG\ncQXEFSCSMogrIK4AkZRBXAFxBYikDOIKiCtAJGUQV0BcASIpg7gC4goQSRnEFRBXgEjKIK6A\nuAJEUgZxBcQVIJIyiCsgrgCRlEFcAXEFiKQM4gqIK0AkZRBXQFwBIimDuALiChBJGcQVEFeA\nSMogroC4AkRSBnEFxBUgkjKIKyCuAJGUQVwBcQWIpAziCogrQCRlEFdAXAEiKYO4AuIKEEkZ\nxBUQV4BIyiCugLgCRFIGcQXEFSCSMogrIK4AkZRBXAFxhXgTacvHOloVCkrNIK7gFZEGJ6zS\n0awQUGoGcQWviPQv+kpHs0JAqRnEFbwj0pc6mhUCSs0gruAVkXrTEh3NCgGlZhBX8I5Ii3U0\nKwSUmkFcwSsi9aJFOpoVAkrNIK7gFZG60EIdzQoBpWYQV/CKSMXpcx3NCgGlZhBX8IpIyRAJ\ncRmXxY1DkT7T0awQUGoGcQXviDRfR7NCQKkZxBW8I9JcHc0KAaVmEFfwikgFIRLiMi6LG3ci\nFYBIiMu4LG7ciZREc3Q0KwSUmkFcwSsiFaCPdDQrBJSaQVzBKyIl0cs6mhUCSs0gruAVkRJp\nrI5mhYBSM4greEWkBBqjo1khoNQM4gpeEYlotI5mhYBSM4greEekB43d23S0LAuUmkFcwTsi\njTS6lp+io2kBUGoGcQWPiHSARWpBer9vjlIziCt4RKT9RA8YzYnm6WibH5SaQVzBOyLdbzQl\nvZc3oNQM4goeEWkf0X3GBUSP9v9VR+tsUGoGcQWPiLSX6B6jCVFjekNH62xQagZxBe+IdLfR\nmKiezvOyKDWDuIJHRNpDdKfRkKgWjdLROhuUmkFcwSMi7SYabtQnqkIjdLTOBqVmEFfwjkh3\nGOcRVbS28LSBUjOIK+QDkX4Lx2HZR7rjt3pEZejOsKNHzJGT+qYVxGEzb6Z7JCNPJptXcQ/n\nTdzf8l/cI5pEOhEWM/Mo0d0nrDVSSetJH5kapxWEmUfTRVwm/8U9rkmksKs+a22+i+gW41yi\nQnSTjvWtDTY+GMQV8sGmXdgPsubdTqKbjdpkMUhH62xQagZxBY+ItIOsVVEtFmmAjtbZoNQM\n4greEWmIUZNF6qujdTYoNYO4gkdE+pVosFGdReqto3U2KDWDuIJHRPqFd46qsUjddbTOBqVm\nEFfwjkgDjSosUnMdrbNBqRnEFTwi0naiG2yRquhonQ1KzSCu4BGRtvHhurNZpAo6WmeDUjOI\nK3hHpOuMiixSGR2ts0GpGcQVPCLSVqJ+RgUWqehuHc0TUGoGcQXviPRvoxyLRN/oaJ6AUjOI\nK3hEpC1EfYyyItKXOponoNQM4goeEWkzn4ktLSIt0tE8AaVmEFfwkkilRKTPdDRPQKkZxBU8\nItImop7GWSKSvp/ARKkZxBU8ItJGoh5GSRFJ3y/3odQM4greEenaPQVFpBk6mieg1AziCt4R\n6ZpfxCN6V0fzBJSaQVzBOyJ13WaL9JaO5gkoNYO4gkdE2kCUvtUWSd89i1FqBnEFj4i0nqjL\nZlukSTqaJ6DUDOIKHhJpky3SnTqaJ6DUDOIKHhHpZ6LO39ki3aCjeQJKzSCu4BGR1hF1XGSL\n1E9H8wSUmkFcwTsidfjCFknfTRtQagZxBY+ItJboigW2SLV1NE9AqRnEFTwi0k9El39mi1RV\nR/MElJpBXMETImUc/p6o/ae2SGfraJ6AUjOIK3hCpK6URNSuvy1SoW062seg1AziCp4Q6TwW\nqG0rfrRsWq6jfQxKzSCu4B2RLr2IH6cQLdPRPgalZhBX8I5IrVvy43SNN21AqRnEFbwj0sUX\n8uMHJWiBjvYxKDWDuIJ3RLqohfWQsLg5zdPRPgalZhBX8I5IFzanhF7LjYup6ns6Gmig1DaI\nK3hHpOb1aLTV0Y7oVg3tY1BqBnEFD4l0Nj1pddzGv92nB5SaQVzBEyLVY5GaVaCnrY6R/EtJ\nekCpGcQVPCGSrJHOr0DPWB1j9P2MLErNIK7gHZEal6P/WB2PEfXS0D4GpWYQV/CESLJp16gM\nPWt1PEnUTUP7GJSaQVzBEyLJGqlBGRpvdTxL1EVD+xiUmkFcwTsinVea+ATSeKIrNbSPQakZ\nxBW8I1K9UvS+1TGBqF3szRNQagZxBe+IVPcs+sDqeJ2olYb2MSg1g7iCd0Q6t6TcP/+/RC00\ntI9BqRnEFTwhkhy1q51Cs6yOd4jO19A+BqVmEFfwjkg1U2i21TGDqH7szRNQagZxBe+IVKME\nzbc6PrI28jS0j0GpGcQVvCNStWLVD1gd84iqa2gfg1IziCt4R6QqRetxxwKiSrE3T0CpGcQV\nvCNS5SLncceXREXXxN4+BqVmEFfwjkhnF67PHVsLkVwqpAGUmkFcwTsiVUxuIF1lSK4C1wBK\nzSCu4B2Ryic3kq5KRNfH3DwBpWYQV/COSGULNpaucaUoLebmCSg1g7iCd0QqXaCJ3dmKOsba\nOhuUmkFcwTsilUr0XRrUjtrH2joblJpBXME7IhFdYHd2oBo7Y22egFIziCt4SaRmdmcXok9j\nbZ6AUjOIK3hJpOZ257Ukl4HHDkrNIK7gQZF6E42MtXkCSs0gruAlkXxf6OtPdEeszRNQagZx\nBS+J1NLuHER0c6zNE1BqBnEFL4l0kd35ONGgWJsnoNQM4gpeEuliX3cN6h9j62xQagZxBS+J\n5L97UD3qHWPrbFBqBnEFL4nU2tfdmK6JsXU2KDWDuIKXRLrU1z2MroqtcT5QagZxBS+J1MbX\nvYkuj7F1Nig1g7iCl0Rq6+v+NbCRFxsoNYO4gpdE8t/ze6+me62i1AziCl4SKfDtiaQmsTXO\nB0rNIK7gJZEu8/ewb8wVMyg1g7iCl0QKHGI4q1ZsjfOBUjOIK3hJpCv8PcpXjq1xPlBqBnEF\nz4hUIOiX+qqWDQx7s/BixRai1DaIK3hGpEKUdc+T2qmBYSNpomILUWobxBU8I1IRok7+HvUL\nBYYNof9TbCFKbYO4gmdEKk50n79H04QD/pe96WHVJqLUAuIKnhCpriVSCtFGf4+LaLf/Zbss\nvaIGpWYQV/CMSCWJNvl7tKVt/pct6BbFFqLUNogreEakUkSb/T060ELfq1+K0HXKbUSpGcQV\nPCNSGaIt/h7pgUN1PxJda+zO5X3hQKkZxBXcIlLmtIEDJmfYr/c90qfvM4ejFKk80VZ/jx6+\nX0hasXYlUYcXCrVS+8EklJpBXMEtIr3TZ9ny/pNtp26/f82XNz0YpUgVqdR+f4++9LQ8l73w\nG6JWw4iuMtKbRt9GlJpBXMElImX0n2+aS3r9za9/TbPe+Xn6/6ITqRJlXWA3kB6T54I1vyRq\n3Ia/O1urwIHc3p4rKDWDuIJLRPolzTDNY2nr+PX+j6yHZb0yohOpCjUK9LiZHjKMXSsOEBWW\nw3lUd2QybY+qfTMbfYJSC4gruESkVemnrMfuS32dq2ddPzMwLOwHiUjVgr4W+zCfPBpaYJVc\nyppgX9FKM6Jp3r4SdB1KLSCu4BKRlvTgx35zfZ0v3/SvRfw8smnTppeHfbPJItWmywLdC2mE\nafalDyiYMV+Fn5CfzBVEpSMfHYA85FTgVXiRVqZnWo/dlwR6LOVtPfP1oUOH3nMiLCzSuXRZ\noHsJ3X7iRE8aGyJSYuLO8FPycUuS9YY9JzIjfkNUmHk0XcRl8l/c41GItJUPMPyVtoZfb5QN\nvB4BqcKu+mTTrk7g3ieGsZAG8M8kDaNQPolsZbtnn2FNMJnmYOODQVzBJZt2GX0XmuaynnLU\n7tM+J03zaPoP0YlUL3DvE8NYSqV2GJ2onkOkBwIj7HJMYc24PYHX39Vsa5QlGkBpKDWDuIJL\nRDKnD9iwafAk01ww1/y9/382/TxqaGCFFvaDRKT6QSKtJFr4Sp2AQKV8zzf5h39QYNKK254J\nmsLN9L7/5dw6VGRfIUr4gJL2oNQG4vpwi0iZUwcOmGTtVY0abpq7xvbt/9SBwKCwHyQiNQr6\nCeafiK7yW5RAdE95+2XgjuBP8NeXkifL61VrDOOTclnfWmrDN8gjSl1H9NE81YuLTh/XXaVG\nXMEtIp2GsB8kIp2fdRMhYxNRMb9IqUSL77ZfBr5BO0Y6k1iTVaUqXLEgmeg236BfC9jyXWj0\npkQaEfV8iQCXlRpxBc+I1DToPsU7gnaM2hGt9x2+u9DY+95eHt7d7l5lvZxgPQ9hd17lAWvT\ne9gnnlqvMN6wns5RnT2njeuuUiOu4BmRmmfdRMjY77eoSmG6j2jLs/aaqY7xCrEvX/odqzDP\nuMd2jaihNWBNL3bIGjtpgmEst14XyIttO5eVGnEFz4h0YdZNhAwj2afKe5fRM0Q7XqcWdbtY\n+0Ub76RagwxjRmB1NUxWTqny+mPDuIKf79hzMU3giTx/Yy36Un0O5R7XXaVGXMEzIl1MHbL6\nlPCJMnvBKz+Xob2LEp81RlmdPc4iKmwY0yjhtUnJfM416dt6VN16rlyFKN0wqvB7RhkLb7cP\nhh96nF5TnkGniRuvpV67Lae+cRs3Z+I47s7NC/Zl6xl3Il2SdSzBMMqwEV3L03fW67aphrHB\nMObWrWLL9asxie4yjPm8vccXtW4sSzTlaqIm2zrzgQZ6LjCVQ7Po7ojmUHTEYal3LzOM2eck\n1/txo7HOWes4jHs64jHu/invr5g1rnoRogZd7lgTOizuRGoTLFIHNuLmLnI4YcMKX8+B/kMM\n4+k/Bp+1Fcoa1xPNfK9bxVIPSvegHYGpHNpIza2n91tvNHQSb6Xesd4YQt2f483hwkWbUvNF\n+0MGx1vcMMRb3HWPNrmqgb2oJVc8m59q3fV/Q//1wP1PTt1mrFwXfyK1y7qtnWG8yIFve7Xj\nnuDRXrWbM8t4gF6yOvfd0aQQ8c3wRhJZ/5Av4WMOlYbdEXR44dDxIrRpTr1a9HrEsy0StJd6\nv29LNNpSb+jbe51hTE5IGienrOvfd4F/zzGYbHF3bjF0kE9FWjz1yWsHv8YV2bvz3dZdLuU9\nCKra/PwLOo/+0jjw4dS7qgX20Cu0Kphc686dYSf5z4p0OXXO6jOJcw53jPYuyW0k6x64hd6x\n+7xpLUDXGS/L3R768FtCfw390MkraWRpq/c9YSNEg/ZSt6v54H5jy4acS73bXr/s22PM+k/I\ngFWvtCBKGXlFIje8ZZ/Eej8aOx8Y0Hl286QCd+5e++Gj49rd8uC9m/1x93/x5Ny50/h9+1tS\n783ZPiZ63CLSnq17eWs3bNylY1d9NW9gN9uRerefXyJJHCp43rSpb4Yc/P120L/HPdv7/pu7\nJPL9gZNWhk3wz4p0ZfAPx06jHBb/T/nEkPX3Q9ZNhq6lGquMj4j2GsYIfsvTIW84dPL/7NlS\neYehEb2lHvfCuATr30ivKilLs5d654E3irbZZRhf3lO7WvfidOPUl7+zB3w0Y/d5RGdXthqX\nMPDeBJpifBLYdn/L+g+a5Pun2XrqDUPWnTDmp8heJ1W/buOP1pYwndvveeflilHjDpG2Plqf\nCqfWuuWhhc+/tzVkyO45e8Y0aj1mr7Hxs7c/+uLbhwrac6x06wteeaq19SKREuuOuf+z0+wW\nLPxgjrHxyVVhM/yzInWiLll93ucmOS9LWGH1u9T6e6Y+b8oJ+5//0PrXzEfyjDetpicsCnnD\noZOrfJfp6fkFQH9cnaW+Vf7/yVql9rONr0r7cd11jdrU4zXGI+Pv6prcwhpyXudBges8qJKs\nTBYnFjqfStX8en3zgt0nGcaiSSHTfLwcLxBFm1xeKIXfcu6k3r7ZYG0K8+IyxnKQSj4d/Xf3\nQ4hrkXasNL4eN/69iaMrZX0zlAo1vfOHPfN7jdv45fJ/d2hckuTYcKmhle2hiVdWqFn71vvs\n/0ez/m/inu9/jeST4m4f6apgkeZwyx50jLbZ6sf/TodXLLAhuP/epNLW476ClPZz6BusUk8k\na3bVpeTw/zZy4tFBOa3K9Il0YOTI2vw/ZPcAKnWHvYNTS5b5m6c1b+Wrfu+y/Njguqsqlhme\nai0Tjad/u6Q+LxtVuLW7czzi/eW47+fL1sjX7aiOTLfxBzNef/WTn1+x9iPPm2ZsGF/P2m0e\nF1v4+BTp/fvLN/98wuhSvBMgNH3g542fLRw5rEG3ZvzvqGISr2uEGlT2nRmXW7OyZPWaFRLK\nfaT2gXEnUjqlZfX5nC4hetYx2oFkoneeuo1qUaXQAXXlbg/V6QfHG6xSb0ihcR+8SvSvsCGc\nbJty4FGiNp/mENccXzGq773nwBPjrO32BXxJxnnv8ur1x63GhhrWasSaE0mtyX8+mlLa3W5s\n+vcF1N3yZfNP1tbt3HrWfqK1LBRuVn1dJJ9z4KsDv1anmlf5N/L3TH7Nd3j8rZKF58fUhPgT\nydrtf9k/50pQtS7p1bp1e8nfcivuDx93rJaQdOsl1DDpumfnrDfe5gVm3ei7rFF2KB/YjTuR\nuvIZVT9fUZdGNMk53lvjOm60NuSS6dzQ/htlLnQutscxPpd6+vXbjS3pVN3aZR/VqXnndl+H\nTeNjBJ3HX+SoZr1cf8G4z7POThkHpxSkQjkIFjlrni1I/zYM3hKnQYG+b1V+Z/mic3p/Yvz0\nZCK1qt9w8VurfPs9QVXeUKOAtX761vk/4zQc3Pq6c8YIr1Gxd5XSM28uemd7fIi0YePL9z36\nwCvjeparUmToUEqqO2ls3VYdnsw2ns/7L+cZe78xItpoi4y4E+laujqrz0rq2p7eyHFkvqD1\n8pwGbM22cAX+Z+6vTx+se4y3oqhZpHsGF/P2cw+iXl8az1FiCn3jH7D7K97ZKDdyp/F5c8Ur\nkFrz5kXbsxJTH1vxdJYkQUjBB2cAACAASURBVP/idz2xee/eXN68d/zEHMXIjVyXzLuo1Mhb\nO/fr8dL27OfrT88mPp9SNLVU+wGB9Evvvs+aGbvf6/L6e9ac2bfsu8Bu7GvPRxp39+Q339+9\nJ0KRNm0+MP4//YfdQSEUfSq38T1ziVAP6prVZ0+3KemUy36NtaU7OrI2Zs27ITS6qW9W3xvZ\ndazf8zmqJ9Y3sLY59zfn9xWT42W/jKyQWoxSZ1hbWDWfGEQllH4q4zZrB/hZ3lAPPeHzj28r\nPeRf/C7Z+r3xYr1n6vf4RpT6WRzeVrdrzzpTV/tm1/S7h6W2kbMOuw5s6Mk7G/LOYhefP9vq\nN6ONtWuXUKGt7M9RlauqU2Ji0UtalKxx1S0NieqF327ateWDDfv5usnEwg+HWV38yicENk+r\nVvYc+bCChS7ofeM9fS6/Zt6EFd3P+TjXt3lGpN50TUjPL3O7TXE1ov9G0sLgefcVXem/fI/6\nhH3fLuOXHSOo67cv7zF2VaWUd+3LYgdb+ykb5TBYgS+M75okUiFrVyYhwijCbvuo/a5i1GWC\nMb1fv3GhhzL+cZEOPFql/p0DallKpxa8yJ45FecYc9vQ+StW7fj5OjmUlVxtyK1Tzql3k33c\nsPliY1zxAqWo6Ber9qyY8siNDa3dtaSRt1kzg87vwjcgTL2kVsNGvHgnBA40lmtG9WafZjtg\n3S/TnuxRKpm/CF22PS8JpafnPOLMlFYtOlxYJ6lw7fTHRON6fW/pf97sCGeDZ0TqQ90iS96M\nKMKflc2ad3t5/ULXfli7urXs+04nXHdDzu96fWCpUmeVb06zpOtmfmPrEVS3AFVftm26LBod\ned71tP4HV7qImt8S0U6/xf4tXXmaB+4sQ61yPNZ2hvbe1y/9grfUCresPqi3ZVJrvm9MAhU8\ni5KGjXoicNiD6nV88wGryedzn6rz/XEXjhzFszax55P7jA3vTJ8ha5OJd83d+c3aWVOmLnxz\nyr2P/bS/q7WSath3/Ij3/B+5z79VML5W5dKJZ8n0k8+i8tONffM+6Z+Y2PO5af4VYeUyHdb9\nIOvJqaXtIPbhuNIVp7wf1RapJ0Tivfp+dG1kyTvS2ZGNGDzv5Bjwg8aeHVWL0eXzdxtfD51O\nST873/DyBcNa9PT9by5on7Hc/ahV43lrunydRtQkJYk6zL6p2zyZd4sSSn54oL61w/ZjyDS+\nqfZWtiC85tnc3Pq3feWeN9tY/8Nzvib9zB0G+/nNcffyhvSBd27lLbTv5FLHRrximPn2/VSG\n/v30pfJV/vV3WmvkkdvW7AiOO79bw2Gn/3nS/c/a9wpIKHLB6s1PlbwipWzqsNUfv3L9M75D\n/BUuvnvK7F+Nr3bZcT/hMwBl75lzfvnbGhTl/R469+nHul5bjPpOef/9pybu3THxuobjwl+Y\n48AzIl1H3SNLPjihf/iRhKB592mZkhfZP3HBX6ntbch2S8L1jjdc7fvvm5RAAa13nlX0cX5e\ndT4PKb4la8lc+AvfE5aCz38Z/MtovrO/G8ffZO1r/DD30zufSWh/YLH1355KJvCBukqzwsbV\nSVSHwfbfXvw5a09wwNxl7/kPdnx34Ousq2B3fPx//v7RxN0x/92birW2VikF/TeysUkZOW3z\n6o9CbkZtxV37VJvG/rOoQ7YM9p33SXog2mMiIXhGpBuoR2TJty+IbLzQebfgk/El5bAef3G2\n1L/s63lLhJZmh30dTaFWi75uRY/6+27xb4e8ZK2buG/wkrl7SI1ECt6b+8JaAqZ//F6dYW8V\nSKTqDafWKyB3Qxpb0PK2mTUFKvNcbstDPIgUBdHG3Xlg80+3F6Vid949a+my9OTy1W7udE+2\nbYJA3C87Vuk0p9+EOdbMmvvtq92q9B4Q0wkH74iUMDbrblu6yHHeHfBtalOFFkQt1lurmsBO\nzlSqPIjObsvXiq9+K4fd48bnSU/HkvkEJd/nP2qwpidRTcoG71ckX7pk456GdEvuR7DyuUjC\n6rd822S79+dyUDyu4kZAvImUND5wIyBt5DzvPunPN57sMmz82yWIWve4o3y1kft2PfXV+8aa\nf9EjxtrTTG+n7Yuj1Ae6kfU+Y/c9VS7czQeuppxr25PQqVPz0lSwKV2S8Mi1RHN43H1zT7N5\n4gWRwuOyuPEn0ot0u452BZPbvHvLWsz5VOqPZ/vWGGNrUgLNbUQU0eaDs9TrC1Lqxin87dxa\nRI2rbV4+qv8LL6TV5Wshdr26dvt9P20w9k67L/yJYCyZjMvixp1IBV6mO3S0K5jc5t321i/Y\nZx/2pgRtf11Rgq6K6Bx8tlK/fD6NaCG/gkvOwxc64saIy5ZMl8WNP5Em/HMiZbGw05139f6w\nsH2Mgc77JaLJZi/1Gr6MdMCWJ4sWifSkUk5gyWRcFjfuRCr4WrZvxMZMpPNuIlHPSg0o0sOG\nOZS6EyXwZZI7f8xh9IjBksm4LG78iTSZ7tTRrmAinXfbGrf/iW2KcCcth1JvGfRqNMFyBksm\n47K4cSdS8hS+x5Zeopp3v1w35LvIxnRZqRFX8IpIpd/Ufw86lJpBXMErIlX5r+Z7/RgotQ3i\nCp4R6S26V0e7gkGpGcQVPCPSDBqpo13BoNQM4gpeEanq3pf03ljYQKltEFfwjEg6GuUApWYQ\nV/CESOfad+vRDUrNIK4AkdRBqRnEFbwiUnUdjXKAUjOIK0AkdVBqBnEFT4hUByIZiGvjsrjx\nJZK1Rqqho1EOUGoGcQWIpA5KzSCu4AmR6kAkA3FtXBY3vkSy1kg1dTTKAUrNIK7gCZHqQCQD\ncW1cFje+RLLWSLV0NMoBSs0grgCR1EGpGcQVvCLSOToa5QClZhBXgEjqoNQM4gpeEam2jkY5\nQKkZxBUgkjooNYO4AkRSB6VmEFfwikjn6miUA5SaQVwBIqmDUjOIK3hFpDo6GuUApWYQV4BI\n6qDUDOIKXhFJ+03tDJTaBnEFr4i0SUejHKDUDOIKXhFps45GOUCpGcQVIJI6KDWDuAJEUgel\nZhBXgEjqoNQM4goQSR2UmkFcwSsibdHRKAcoNYO4AkRSB6VmEFeASOqg1AziCl4RaauORjlA\nqRnEFSCSOig1g7gCRFIHpWYQV/CESLUhkoG4Ni6LG3cibdPRKAcoNYO4AkRSB6VmEFeASOqg\n1AziChBJHZSaQVzBKyJt19EoByg1g7gCRFIHpWYQV4BI6qDUDOIKEEkdlJpBXMErIv2io1EO\nUGoGcQWIpA5KzSCuAJHUQakZxBUgkjooNYO4AkRSB6VmEFfwiki/6miUA5SaQVwBIqmDUjOI\nK+QDkQ6G49C5RDvCjhU9v53Mg4lacc0TeTJdxGXyKu6hvIl7MIK4hzWJlBEWa430e/ixoicz\nLyaakWHm0XQRl8l/cU9qEinsqg+bdgLiMi6LG3f7SDt0NMoBSs0grgCR1EGpGcQVIJI6KDWD\nuIJXRNqpo1EOUGoGcQWIpA5KzSCuAJHUQakZxBUgkjooNYO4gldE2qWjUQ5QagZxBYikDkrN\nIK4AkdRBqRnEFSCSOig1g7iCV0TaraNRDlBqBnGFuBTp6GfT9/6RCZH0griMy+LGJNKrxYgW\nT6vyHkTSCuIyLourKtLn1t/H1PZtWryuZsI8iKQTxGVcFldVpOQPTPOSJhkmLTb/PPdSXSKd\nA5EMxLVxWVxVkXolvWaWGGuySOaIkhBJJ4jLuCyu8j7SgpZm1RG2SLdXgUg6QVzGZXHVDzZk\nmD0rH2aRtpa/FiLpBHEZl8WN5ajd9pTqj9Go0RVKbIZIOkFcxmVxYzr8vaYdWVy5OjKPIhNp\nj45GOUCpGcQV4lEk0zz8zarfI9QIIkUK4jIuixuLSH3X289f3gKRdIK4jMviKot07OBB+lDu\nH3nggaIQSSeIy7gsrrJI11MW7TSKtFdHoxyg1AziCvEm0rxnnqGhzwgTD+dgjZJItbFGMhDX\nxmVxY9lHahvp4TqskaICcRmXxY2v7yNBJAZxGZfFVRXp8qutvwAaRdqno1EOUGoGcYU4E6lZ\nW9NsGQAi6QRxGZfFjbtNO4iEuILL4kIkdVxWasQV4kykliFoFGm/jkY5QKkZxBXiTKRLQoBI\nOkFcxmVx427TDiIhruCyuBBJHZeVGnGFOBMpz84jHdDRKAcoNYO4QpyJlGfnkSAS4gouixt3\nm3YQCXEFl8WNTaRfp4x8+O3fzAgJ+0EQSUBcxmVxYxJpRDJ/Gyn1BZ0i6WiTE5SaQVwhDkV6\nhS6au8/4rBV9AJF0griMy+LGIlKz+n/x098NWkMknSAu47K4sYhUYpT9PDoFIukEcRmXxY1F\npAuH2s+3NIZIOkFcxmVxYxHprWJL+OmroqMhkk4Ql3FZXFWRxjD1qf0dd7RPKD5Zn0gJOtrk\nBKVmEFeIM5EoBIikE8RlXBZXVaSMECCSThCXcVlcHZcILeigT6QKOtrkBKVmEFeIR5HeHdyX\nqVlOn0ijdbTJCUrNIK4QhyJNoJSiVK1yQoX/6hKpFkQyENfGZXFjEalxi+N7C682vyqzU59I\nY3S0yQlKzSCuEIciFX/cNJtONs0b+0AknSAu47K4sYhUdpxpdr/HNCdXhUg6QVzGZXFjEenS\nC38zRzUzzXtLQiSdIC7jsrixiPQJpf6xPGHIgyU7QSSdIC7jsrgxHf5+48pj5sMFqcZ6iKQT\nxGVcFjf2E7JH156IzCOIFCGIy7gsbnzdswEiMYjLuCxufN2zoRaN1dEmJyg1g7hCHIqk/54N\nEIlBXMZlcePrng0QiUFcxmVx4+ueDRCJQVzGZXHj654NEIlBXMZlcePrng0QiUFcxmVx4+ue\nDRCJQVzGZXHj654NtehhHW1yglIziCvEmUh5c88GiMQgLuOyuLFd2ZC5fcH8baci0wgiRQri\nMi6LG5NInzfm7bqGCyGSVhCXcVncWERamXz22JmzHz07+QeIpBPEZVwWNxaROlYz+Olgtasg\nkk4Ql3FZ3FhEKj/Cfh5ZASLpBHEZl8WNSaQHfCKVh0g6QVzGZXFjEalTtYP8dLC6xq+aP6Kj\nTU5QagZxhTgU6fvkSo99OPuxSskrIZJOEJdxWdyYDn8vaMSHvxt8FplHEClCEJdxWdwYT8hu\n/fTTrVpPyEIkxLVxWdwYRPqzxqRIFYJI0YC4jMvixrJGOv96iJQXIC7jsrixiPRTlYkRXq4K\nkaIBcRmXxY1FpO7tqVi9Zow+kR7V0SYnKDWDuEIcitQ2gC6RakIkA3FtXBZXx09fhpA5beCA\nyb4tvuOv3Nhr1DaIFCWIy7gsbmwiHZg2duSbu0N6vdNn2fL+vu+ePzzg2w1j+h+DSNGBuIzL\n4sYk0rhifEK2yMNBvTL6zzfNJb3+FnHSfjTNv7svgkjRgbiMy+LGItIbdPHcfcbnrWlKVr9f\n0gzTPJa2jl9vHW75lNl3FkSKDsRlXBY3pvvaNZAVz/8atczqtyqdL3TovjTQ47u0TRApOhCX\ncVncGETKLOS70+qYElk9l/Tgx35z/eN82m0CPz/arl27azLDUoueDT+SAmaeTDXTzKvp5tFk\nEVemm0eTDT/drLOuISKdKDjEfnFz0HmklemZvEZaYnftu6+XrdR/0tPT+2WEpRbNDD9S9JzK\nzIupZmSYeTNdxBXyX9yTuWza3VJYbnuyqMiUrH5b06z1119pa6RjY6+njgSNH3bVZ23azdCx\nlnWCjQ8GcYX427QzJ1SiS4cNu5QqjbL42O6X0deSa1lP2XnKuP61kPHDfhBEEhCXcVncWEQK\nudnqMF/P6QM2bBo8yTQXzDVXpH/9k8UhiBQdiMu4LG4sIoVuevp6Zk4dOGCS1TFquDkrTZgD\nkaIDcRmXxdV+idBpCPtBEElAXMZlceNNpJk62uQEpWYQV4BI6qDUDOIKEEkdlJpBXAEiqYNS\nM4grxLFICzpAJJ0gLuOyuDGJ9O7gvkzNchBJJ4jLuCxuTFc2UEpRqlY5ocJ/IZJOEJdxWdxY\nRGrc4vjewqvNr8rshEg6QVzGZXFjEan446bZdLJp3tgHIukEcRmXxY1FpLLjTLP7PaY5uSpE\n0gniMi6LG4tIl174mzmqmWneWxIi6QRxGZfFjUWkTyj1j+UJQx4sqe33kWrSLB1tcoJSM4gr\nxKFI5htXHjMfLkg11kMknSAu47K4sZ+QPbr2RGQeQaQIQVzGZXHj7RIhiIS4Ni6LqypSyxAg\nkk4Ql3FZXFWRLgkBIukEcRmXxcWmnTouKzXiChBJHZSaQVwBIqmDUjOIK0AkdVBqBnEFT4hU\nAyIZiGvjsrjxJtJsHW1yglIziCvEpUhHP5u+949MiKQXxGVcFjcmkV4tRrR4WpX3IJJWEJdx\nWdxYRPqY2r5Ni9fVTJgHkXSCuIzL4sYi0iVNMkxabP557qUQSSeIy7gsbiwilRhrskjmCG1f\n7INIDOIyLosbi0hVR9gi3V4FIukEcRmXxY1FpJ6VD7NIW8tfC5F0griMy+LGItL2lOqP0ajR\nFUpshkg6QVzGZXFjOvy9ph3/Vt+VqyPzCCJFCOIyLosb45UNh79Z9XuEGkGkSEFcxmVxVUU6\nEoI+kT7U0SYnKDWDuEKciRTyQ8wRXoIX9oMgkoC4jMviqor0jMXTNeiyu8f0KHDJnJy0gUiq\nIC7jsrix7CO9WGQJP60u8QJE0gniMi6LG4tIF9xkP992AUTSCeIyLosb0yVCI+3nB1Mgkk4Q\nl3FZ3FhEurjuH/z0Zz1tt+OCSAziMi6LG4tI79IFM7dvn9mUIvxCUtgPgkgC4jIuixvTCdnn\nUvjYd8kIjzVApAhBXMZlcWO7suHgB+Oennk4Qo8gUoQgLuOyuPF28xOIhLg2LosbbyJ9pKNN\nTlBqBnEFiKQOSs0grgCR1EGpGcQVIJI6KDWDuAJEUgelZhBXiEORfh9YtYwNRNIJ4jIuixuL\nSIOo2Q2DBIikE8RlXBY3FpHK94xMIIgUHYjLuCxuDCKdoEkQKS9AXMZlcWMQ6VTZYRApL0Bc\nxmVxY9m0e7vwa6f0ilSdPtbRJicoNYO4QhyK1LUGFa/fhIFIOkFcxmVxYxGpYwCIpBPEZVwW\nN75OyEIkBnEZl8WNTaTM7Qvmb4t4PynsB0EkAXEZl8WNSaTPG/M3ZBsuhEhaQVzGZXFjEWll\n8tljZ85+9OzkHyCSThCXcVncmA42VDP46WC1qyCSThCXcVncmC4RGmE/j6wAkXSCuIzL4sYk\n0gM+kcpDJJ0gLuOyuLGI1KnaQX46WL0TRNIJ4jIuixuLSN8nV3rsw9mPVUpeqU+kOTra5ASl\nZhBXiEORzAWN+PB3g88i8wgiRQjiMi6LG+MJ2a2ffrpV6wlZiIS4Ni6LG2+XCEEkxLVxWVxV\nkS6/2voLAJF0griMy+KqitSsrWm2DACRdIK4jMviYtNOHZeVGnGFOBSp73r7+ctbIJJOEJdx\nWVxlkY4dPEgfHmQOPFAUIukEcRmXxVUW6XrKoh1E0gniMi6LqyzSvGeeoaHPCBMj/KmxsB8E\nkQTEZVwWN5Z9pLarIxMoGpE+0dEmJyg1g7hCHIrkZ0EHiKQTxGVcFjcmkd4d3JepWQ4i6QRx\nGZfFjUWkCZRSlKpVTqjwX4ikE8RlXBY3FpEatzi+t/Bq86syOyGSThCXcVncWEQq/rhpNp1s\nmjf2gUg6QVzGZXFjEansONPsfo9pTq4KkXSCuIzL4sYi0qUX/maOamaa95aESDpBXMZlcWMR\n6RNK/WN5wpAHS2q8ZwNEQlwbl8WN6fD3G1ceMx8uSDXWRyZSRliq05fhR1IgM0+mmmHm0XQR\nl8l/cU/mJpJwdO2JyDzCGilCEJdxWdx4+z7SXB1tcoJSM4grxKFIO9LLFbfRJVI1iGQgro3L\n4sZ0g0iqc9MwASLpBHEZl8WNRaQSQyITCCJFB+IyLosbi0g1J0CkvABxGZfFjUWkO9pG9aPm\nEClCEJdxWdxYRDrRrNlTkwSIpBPEZVwWNxaRZiX7b9oAkXSCuIzL4sYi0gWVXl67QYBIOkFc\nxmVxYxApI+mFyASCSNGBuIzL4sYg0okij0GkvABxGZfFjWXT7uFSyzWLVJ0+19EmJyg1g7hC\nHIp0dYmEWk0EbSKV3q+jTU5QagZxhTgUqWMAXSJVq6ijSdlAqRnEFeJQpGgJ+0EQSUBcxmVx\nIZI6Lis14gpxJlLe/GIfRGIQl3FZ3Pj6xT6IxCAu47K42LRTx2WlRlwhDkXS/4t9EIlBXMZl\ncePrF/sgEoO4jMvixtcv9kEkBnEZl8WNr1/sg0gM4jIuixtfv9gHkRjEZVwWN+ajdidmz/kD\nImkFcRmXxY1FpD9uaGBmtiequwci6QRxGZfFjUWku6iT+RkNn5l6M0TSCeIyLosbi0jVu5jm\nraX+Z/Y7ByLpBHEZl8WNRaTCj5hmk2tN8+nCEEkniMu4LG4sItXqYe5IeNk0B2v7xT6IxCAu\n47K4sYh0X8E7GibvPjo+uR9E0gniMi6LG4tIR9MTkp43V9K52yGSThCXcVnc2M4jHfnDNA8u\n+isyjyBShCAu47K4Or5GsetbiKQTxGVcFldVpMpP8eP1M/hxjL5bFkMkA3FtXBZXVSQalfWo\nT6SqEMlAXBuXxYVI6ris1IgrQCR1UGoGcQWIpA5KzSCuAJHUQakZxBUgkjooNYO4QryJdM07\nFvZjd4ikFcRlXBZXWaQQIJJOEJdxWVxVkaaFAJF0griMy+LG151WIRKDuIzL4kIkdVxWasQV\nIJI6KDWDuAJEUgelZhBXgEjqoNQM4goQSR2UmkFcASKpg1IziCtAJHVQagZxBYikDkrNIK4A\nkdRBqRnEFSCSOig1g7gCRFIHpWYQV4BI6qDUDOIKEEkdlJpBXAEiqYNSM4grQCR1UGoGcQWI\npA5KzSCuAJHUQakZxBUgkjooNYO4AkRSB6VmEFeASOqg1AziChBJHZSaQVwBIqmDUjOIK0Ak\ndVBqBnEFiKQOSs0gruAJkapAJANxbVwWN85EOltHk7KBUjOIK0AkdVBqBnEFiKQOSs0grgCR\n1EGpGcQVIJI6KDWDuAJEUgelZhBXgEjqoNQM4goQSR2UmkFcASKpg1IziCtAJHVQagZxBYik\nDkrNIK4AkdRBqRnEFSCSOig1g7gCRFIHpWYQV4BI6qDUDOIKbhEpc9rAAZMzAp1v/g2RogVx\nGZfF1S7SO32WLe8/2d/1c9pRiBQtiMu4LK5ukTL6zzfNJb3s9dAP47pBpOhBXMZlcXWL9Eua\nYZrH0tbZ66NZEyFS9CAu47K4ukValX7Keuy+1Ne52SfSf9LT0/tlhKVKpfDjKHAqM08mm2Hm\nzXQRV8h/cU9GIdKSHvzYb65DpEfbtWt3TWZYqlQKP44KZh5NNq+mm0eTRVyZbh5NNvx0s47B\nhRdpZXomr5GWOEQSwq76sGknIC7jsri6N+22pllj/5W2BiKpg7iMy+JqP2rXd6FpLuvpP3sE\nkRRAXMZlcbWfR5o+YMOmwZNMc8FciKQI4jIui6v/yoapAwdMOmWao4ZDJEUQl3FZXFxrp47L\nSo24AkRSB6VmEFeASOqg1AziChBJHZSaQVwBIqmDUjOIK0AkdVBqBnEFiKQOSs0gruAJkSpD\nJANxbVwWN85EqqSjSdlAqRnEFSCSOig1g7gCRFIHpWYQV4BI6qDUDOIKEEkdlJpBXAEiqYNS\nM4grQCR1UGoGcQWIpA5KzSCuAJHUQakZxBUgkjooNYO4AkRSB6VmEFeASOqg1AziChBJHZSa\nQVwBIqmDUjOIK0AkdVBqBnEFiKQOSs0grgCR1EGpGcQVIJI6KDWDuAJEUgelZhBXgEjqoNQM\n4goQSR2UmkFcASKpg1IziCtAJHVQagZxBYikDkrNIK4AkdRBqRnEFSCSOig1g7gCRFIHpWYQ\nV4BI6qDUDOIKEEkdlJpBXAEiqYNSM4grQCR1UGoGcQWIpA5KzSCuAJHUQakZxBU8IVIliGQg\nro3L4saZSJV1NCkbKDWDuAJEUgelZhBXgEjqoNQM4goQSR2UmkFcASKpg1IziCtAJHVQagZx\nBYikDkrNIK4AkdRBqRnEFSCSOig1g7gCRFIHpWYQV4BI6qDUDOIKEEkdlJpBXAEiqYNSM4gr\nQCR1UGoGcQWIpA5KzSCuAJHUQakZxBUgkjooNYO4AkRSB6VmEFeASOqg1AziChBJHZSaQVwB\nIqmDUjOIK0AkdVBqBnEFiKQOSs0grgCR1EGpGcQVIJI6KDWDuAJEUgelZhBXgEjqoNQM4goQ\nSR2UmkFcASKpg1IziCtAJHVQagZxBYikDkrNIK4AkdRBqRnEFSCSOig1g7iCJ0Q6GyIZiGvj\nsrhxJlIVHU3KBkrNIK4AkdRBqRnEFSCSOig1g7gCRFIHpWYQV4BI6qDUDOIKEEkdlJpBXAEi\nqYNSM4grQCR1UGoGcQWIpA5KzSCukA9EygjL2VXDj6NCZt5M1syj6SIuk//intQkUlhjsUYS\nEJdxWVxs2qnjslIjrgCR1EGpGcQVIJI6KDWDuAJEUgelZhBXgEjqoNQM4goQSR2UmkFcASKp\ng1IziCtAJHVQagZxBYikDkrNIK4AkdRBqRnEFSCSOig1g7gCRFIHpWYQV4BI6qDUDOIKEEkd\nlJpBXAEiqYNSM4grQCR1UGoGcQWIpA5KzSCuAJHUQakZxBUgkjooNYO4AkRSB6VmEFeASOqg\n1AziChBJHZSaQVzBEyJVhEgG4tq4LG6ciVRVR5OygVIziCtAJHVQagZxBYikDkrNIK4AkdRB\nqRnEFSCSOig1g7gCRFIHpWYQV4BI6qDUDOIKEEkdlJpBXAEiqYNSM4grQCR1UGoGcQWIpA5K\nzSCuAJHUQakZxBUgkjooNYO4AkRSB6VmEFeASOqg1AziChBJHZSaQVwBIqmDUjOIK0AkdVBq\nBnEFiKQOSs0grgCR1EGpGcQVIJI6KDWDuAJEUgelZhBXgEjqoNQM4goQSR2UmkFcASKpg1Iz\niCtAJHVQagZxBYikU4JBOgAACzdJREFUDkrNIK4AkdRBqRnEFSCSOig1g7gCRFIHpWYQV4BI\n6qDUDOIKEEkdlJpBXAEiqYNSM4greEKkChDJQFwbl8WNM5Gq6WhSNlBqBnEFiKQOSs0grgCR\n1EGpGcQVIJI6KDWDuAJEUgelZhBXgEjqoNQM4goQSR2UmkFcASKpg1IziCtAJHVQagZxBYik\nDkrNIK4AkdRBqRnEFSCSOig1g7gCRFIHpWYQV4BI6qDUDOIKEEkdlJpBXAEiqYNSM4grQCR1\nUGoGcQWIpA5KzSCuAJHUQakZxBUgkjooNYO4AkRSB6VmEFeASOqg1AziChBJHZSaQVwBIqmD\nUjOIK0AkdVBqBnEFiKQOSs0grgCR1EGpGcQVIJI6KDWDuIJbRMqcNnDA5IzsryFSxCAu47K4\n2kV6p8+y5f0nZ38NkSIGcRmXxdUtUkb/+aa5pNffztcQKXIQl3FZXN0i/ZJmmOaxtHXO1xAp\nchCXcVlc3SKtSj9lPXZf6nj9Ut++fYeeDEuF6uHHUSEzbyZr5tF0EZfJf3FPRCHSkh782G+u\n4/XIpk2bXh72zeb36eHHAcClnAq8Ci/SyvRM67H7EudrJuyqz2Vrc8QVEFfQvGm3Nc0a+6+0\nNc7XEClyEJdxWVztR+36LjTNZT3/dr6GSJGDuIzL4mo/jzR9wIZNgyeZ5oK5Wa8hUlQgLuOy\nuPqvbJg6cMAka69q1PCs1xApKhCXcVnc+LrWzl3zDnEFxBUgkjKIKyCuAJGUQVwBcQWIpAzi\nCogrQCRlEFdAXAEiKYO4AuIKEEkZxBUQV4BIyiCugLgCRFIGcQXEFSCSMogrIK4AkZRBXAFx\nBYikDOIKiCtAJGUQV0BcASIpg7gC4goQSRnEFRBXgEjKIK6AuAJEUgZxBcQVIJIyiCsgrgCR\nlEFcAXEFiKQM4gqIK0AkZRBXQFwBIimDuALiChBJGcQVEFeASMogroC4AkRSBnEFxBUgkjKI\nKyCuAJGUQVwBcYV/UKQj4Ti87Mew46jw+/E8mexvbou7Ok+mi7jM4WU/hB3nqCaRwvJn06F5\n+wF6+bvpTWc6QjQcb3rjmY4QDcebDj7TEaLhZNNBUYwNkYKBSHkJRFIHIuUlECkvgUjqQKS8\nBCKpk/H593n7AXo55ba4K890hGhwXdwVUYydxyIB4A0gEgAagEgAaCBvRcqcNnDA5Iw8/YhY\nOf7Kjb1GbTPNGWkWXbMix2n03GLGZ9yv04TnXDJ33/zbzH3OhomctyK902fZ8v6T8/QjYuXh\nAd9uGNP/mPny6O+//35VVuQ4jZ5bzPiMe9gK+/3yPovcMXd/TuMLFXKbs2Ei56lIGf3nm+aS\nXn/n5WfEiJH2o2n+3X2ROfpt6fZHjtfoucSM17jMzIdyjX2Gk4Xww7huLFJuczZc5DwV6Zc0\nwzSPpa3Ly8+Ika3DrVmT2XeWedOiv/n/kT9yvEbPJWa8xrU40GdfrrHPdLZgfp41kUXKbc6G\ni5ynIq1KP2U9dl+al5+hg+/SNmVec1d62s0/ByLHafTcYsZpXOa5V3OPfaazhbKZRcptzoaL\nnKciLenBj/3m5uVnxE7mp90mmAevnXTYeKrPEX/kOI2eW8w4jWuxu8fB3GOf2WhORKTc5my4\nyHkq0sr0TOux+5K8/IyY2XdfL//c+V+Phf7I8Rw9h5jxG/elp/yv4n7uiki5zdlwkfNUpK1p\nv5nmX2lr8vIzYmVjr6eOBDpunuGPHNfRs8eM27jHe2ddZxPvc1dEym3Ohouct0ft+i40zWU9\n4+rgjIOM61+T56U3/26af3Zf4Y8cp9FzixmncU3z61586sUdc1dEym3Ohouct+eRpg/YsGnw\npDz9iBhZkf71TxaHjvYd/cPaUcNPBSLHZ/RcY8ZnXNN88SF+dMfcFZFynbNhIufxlQ1TBw6Y\ndCpPPyJGZtnn3ueYBx7ve93zR7Mix2n03GLGaVzzxuny5Iq5a4uU25wNExnX2gGgAYgEgAYg\nEgAagEgAaAAiAaABiASABiASABqASABoACLpZBDdZ79o2SD3kTJoTASTeoaOhB/JR7PLc578\nJS3DvLFn8udh++U0DsgGRNLJICpof/PrnxWp7dU5Tz6cSAuSPgjbL6dxQHYgkk4GUZE28uKf\nFSm3yYcRKaPla2H75TQOyAGIpJNB9Bj9l19kE+lk1v1nHCL9mfOkIhfJMYFoNu0CnDoZfsLg\ndEAknQyi43XKHzZ9In3fuULFznwP5I5XP1I0qensE8PPSem8g5f0ty5KaTHBGtC2+08X1DDN\n7b2rp7SeE5jKu5ekNH1JRAoZ0LMg/6zVn8U6muYnbcqVaDIxMIGWvI/k7xc0eRHJMfGv2qe2\nfG9Qk+ABHbu+U44qDP49uF+2ZI7JAAcQSSeDyFxAt5i2SAuSq95/f1XeVe9Y4qxHX6iU3KzN\nqzdSurWkNyg2ZOR5NMJaXNtX7f+auSa18v1jGydM8E3kearzwJAiNSyRQgfMoKnW4/s03XyD\nWjz+WAt61z8BFinQL2jyLJJj4l8UavzwDQUqNAke0LFG4Vte60EDg/s5kzkmA5xAJJ1YIpm9\nE1eKSJmNzjZM06jYONPsmPCdab5MTU+ZZp1y1pJOS0zzr4sK/Wq2JV6ttK9mrcROti1m//zb\nodQLjpnmErJECh3wV/FrrMeeKX+ZV6Za66bjKYNN3wRYpEC/oMmzSKHTMJud95dpTqAmwQM6\nEu8HNasa3M+ZzDEZ4AQi6YRF2l2i+SkWaSs9yr3G0nazYy3rxVriuxfcVNxa0tvzgLk0xWxb\nzNp1OmyP+DZ9JtP4gGbwU3s64hhg9in6l/lXMWvFcewPq2tv0b6mPQERKdAvaPKWSI5pbKXn\nrMcTKU2CB3QszhO5oUxwP0cyZxTgBCLphEUyn6VXWKRPaTb3mkkLzI68S7KB+OuVw1ikO3jA\nXhpptq1nvfiGfNjfgRtH2/jpbjriGGDOplmWZnz7jeUP9mxamFgknoC9j+TvFzR5SyTHND4l\nudFL4ybBAzrWl+xlgvs5kjmjACcQSSciUkbjs/aLSB9yr9k0P2eRDHrYbNvMerGKRi0W9so0\nnrZWYRZj6IhjgPm/lH5mr+qZpvlIQtN7Jq2qxiLxBESkQL+gyVsiOabxEc3jpwuaBA+QeCxS\nUD9HMmcU4AQi6UREMr9OuE427R7jjketFYxTpMt4wGf0tr24/m4fr1437Q+ZxkyayU896Ihj\ngGn2O+v3Yg+Z5tGCQ7ircrBIWf2CJm+J5JjGz/S89XjyrCbBAwIiBfVzJMsWBTiASDqxRTJv\nSCjZwDzVoNIh0zxYqcGpbCIlLDXNvy9JPeTz4IoKW03zz5pVMuXNh0s2+9M0fyxARxwDTPNj\nuok2m+ZP9KDV8VVCsEhZ/YImzwcbQqeRUa/B36b5Oh9syBoQECmonzOZMwpwAJF04hPJKEUN\nrHVCweoPjqqevMDMJlLxYreObkgv+D34oUSF4SPOTXjXN5Hn6LyHbk+5xBLJMcA8XjKhlfV0\nonrJ+yYPKVOh1oIskbL6BU2eRXJMY0GBZuNuqlyrefCALJGy+jmTOaMABxBJJz6RzIkskrmi\nY/nynVaZ2UWa/GCjEq3eN/2Lq7m5W+XU1vMCU3m3Vcr5L8zhE7KOAeb1JCdyfu6YWuVfO6eW\n6xC0jxToFzR5OSHrmMbii1MvX9fosuABWSJl9cuWzBkFhAKRPEXmhEXW49Hiw890kHwHRPIW\nbVI+P7r9X4V+PdM58h0QyVvsbEVElXBaVTsQyWtsWbgl3m5xmh+ASABoACIBoAGIBIAGIBIA\nGoBIAGgAIgGgAYgEgAYgEgAagEgAaAAiAaCB/wcc9FKb2uOOwQAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "n <- 10000\n", "p <- 0.3\n", "\n", "# Générer n observations de S\n", "df <- data.frame(S = sapply(p*rep(1,n), FUN = geom))\n", "\n", "# Proposer une estimation de P(S = 1)\n", "prob1 <- sum(df$S == rep(1,n))/n\n", "sprintf(\"On estime donc cette probabilité par : %f\",prob1)\n", "\n", "# Faire un plot montrant la convergence de cette probabilité\n", "df$prob <- cumsum((df$S == rep(1,n)))/(1:n)\n", "df$iter <- 1:n\n", "\n", "fig <-ggplot(df,aes(x=iter,y=prob)) + geom_line() + \n", " labs(title=\"Convergence de l'estimation de P(S=1)\", \n", " x = 'Nombre de variable générée',y=\"Estimation de la probabilité\") +\n", " theme(plot.title = element_text(hjust = 0.5, size = 16))\n", "fig" ] }, { "cell_type": "markdown", "execution_count": null, "id": "80dfbd98-0600-46c2-8a9c-595aabfbe2ab", "metadata": {}, "source": [ "b\\) De la même manière que la question précédente, estimer la probabilité $\\mathbb{P}(S>3)$.\n", " \n", "**Solution**: \n", "Observe que la probabilité que notre estimation semble converger vers une valeure proche de $0.34$, qui est justement proche de la vrai valeur de $\\mathbb{P}(S > 3) = (1-p)^3 = 0.343$ (pour $p = 0.3$). \n" ] }, { "cell_type": "code", "execution_count": null, "id": "954df319-97c5-4f55-8b77-53d15259dafb", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "'On estime donc cette probabilité par : 0.338800'" ], "text/latex": [ "'On estime donc cette probabilité par : 0.338800'" ], "text/markdown": [ "'On estime donc cette probabilité par : 0.338800'" ], "text/plain": [ "[1] \"On estime donc cette probabilité par : 0.338800\"" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2dB5zU5NaHzy7s0pYiHQEBC4iA\ngEsHkSaisohIuwhILwpXsCMgYsOL5RMElSa2axewISpeQAGRJr2KKEVKUIqCgsvmyzmZ3c3M\n7mxmMu9KQv7PTzeZTOad/5uTh2SSTIZ0AEDM0LkOAMD5AEQCQAEQCQAFQCQAFACRAFAARAJA\nARAJAAVAJAAUcF6L9HGfy4oUrnPLW2nnOogdqUTrwj23juiPyFtaTNFWNPpX5JxXH0YmidVv\nej9j4oGij8nw7+kdaxUqUbPflzk1/8uC38yR1o3PRp3tHHEei/Rzo0BFqe6Gc53FBnuRupS9\nIaKWXCQS0+ZUYGKX0r/Lm12c/sxNv4ZvfjgtNkdW0NSos50jzl+Rdpcj6vD6ss8mtyKqnEPV\n3IC9SG2okU0bA2rONP6urlMn4neN/hXp2IhUYh2zaIphzb3mtE9oEg9+KkHFRi/+ce37NxC1\nDLufcLx0ukh6xyL7ow53bjhvRTrdgBJnmKNz89LN5zaMHSpEakNPRvmu0b8iHRuRygbGTtWg\nPJqMJSed5MHNVGK7+dSLRDPDvH6fYVm6SEvoLocR/2nOW5GmEM1JH3+I8hw6l1lssRepB3Ww\nacOFIulvES3i4VK6TR6XoVHpTzWhq7N78e67WidQpkhplYr+7jDjP8z5KlJqZaqX8WA30Uth\n5vs98gMRWkRzRdFgJvYi/R89atNGFi3O2B2jsBUpbF8iFen7wILvQl/x4CDR9PSnRherld2L\nF5ifoBZnzEZTcs7oFs5XkVYSzc18tHTxNh6kzeh8adGmQ2Vc/8Go98uVKO9lvX/Q9RFUKtWc\ntS0158HijmXzX/avb2XSJqqg77i+4D3G6Jnxl+cvd9u+pVTTnNs6W1CDTOqz9Yok1Xn0dNZZ\nM/h1+CX5Snf8JmPFzGYmU6SlND+bGRbfXK1ApdbvGet7T1n/mhkfz8mM8uedSZS/1ou6vui6\n4oVqP/u3zP/XhBsuzl+l9Rtn9NBX5LRwostrFekjonnG4GRiYTn6djoPtddz5sjChQvftYi0\nkhrbvMIlnK8iPUl0JHTawevMf+4KvsiPjHVlElE8P97M3v1P5jmch14xFBgTb876AP+bbIj0\nQxmi+4yN0jUytdzTpkjBswU1aPBLC/PJhvuyzJrOiotkWvwUc8XMdiZTpJN9jmSdIf34WC9d\nf6BmISpTs1eGSKU7EeUxnnpoapxEGsrzr68WeEHK2dBX5LRwostrFcloc5fOm5k25uPWRO2+\nsc77yOw/s9buoEWkM/nznsg6hws5X0XqT4WzTLuO4h/49qd59Yj4LMYPlC+h6hd/nJiZn27Q\n9UvpdplnCiUZq+2jFDdo6d6FKUQTdRapbIMaCw7rvLkq8tL2NWON1UdECp4tuEFdb0hJkzft\nmlmGrkgNnTXA0eJUYMJ3a58qGG+umNnOZD2PFDzDe0R3fn9wXX+ij/T0HbV0kYh67ExdeTnF\nx7XekLqpAcUZHxLP1qAKr/1wcPUdgY+P1lfkuHCiypsh0rFl7cncAt1DY8ynNpUygpXt+fJP\n6fN2phIP/KSHYBXJ+Cz1cZZCupHzVaSb6MrQScbu97s8/Ks51UmTla3ccX78EJXQ9bFUVvY+\nmtIAo5JJ9Ly8ZAgV0lgkqiDnQ5ZQ/BoeTjdFCpktuEH9bcq7lh+tjDP2ykJmDXA35ZNZViXI\nipn9TBaRQmboSynyqCbdrWcRqSM/8yVRLd6p2ywf+ncSfSMvaEEP6CGvyHHhRJU36DxShcPm\nQk0/M7unX5JMv+QOc9dwUds4ytNxYXChgkS6PfP4hKs5X0VqT1nOjnSipubIMqIVsq7IuQ1j\nbcur61uJvjbGf46j5bo+jmqZ+x/H89FbIpK5wtxirp763xeJSCGzBTeoN6KegfetOT101gBF\naKQ50k9WzOxnsogUMkMnaiUPjx48pmcRiXuj/5Z+kLkQf1bR5s0zX96dhukhr8hx4USV1yJS\n0duPypQqtCTj2ZML7qsnO4S3mudqd4wsRlR9qnX/LUikcYEDfm7nfBWpLxUJnVST/hMYK0Gv\ny7rynTxaKutKXfq38fc/VE1nYQIrjDF1pIi0TB5VTz+E1EtECpktpMGi9E7me4fMavKLrLPM\nV7JiZjuTVaSQGaYRNZ29O32+EJF+4Wl/Ef+7YFBSPvQLJ9dNKpRVpJwXTjR5M07IrtuXPqUA\nbdKtHP2gRwHKOLd3ckZdosLDt2U8HSTSZLpO9wLnq0gPEx3OfPTusJFpafnpvcDDejQuc2UL\nrCsTqbzxz2sd2duvZdk56Ski7eUZUxPpQ7OBB0WkkNmCGzyQvioKIbOaLCIKXHGxW1bMbGey\nihQ6w5j8xkipTq/IqZYQkQ7yNEOk1fLKgEhfDmtSSl4dKpLNwokmr/Vgg8nJwPKzsrte+r9O\nzPJbEymu7ZbAoyCRXqOrQl/rSs5XkZYQfZD5qAU10c9mriuN6P7MlS2wruyJMwq7lfIeMMbL\nU/ma6dwtIskRwL/i5VO9zp8camadLbhBY137PjNAyKwmy4kCF2celxUz25msImWZ4cD0m0sa\na3F53o+zF+nkDURFrhn0n0W3ZhHJZuFEkzerSHo+Mh15ouN/MqYZH9ietsxyqB3x4VIhSKSp\n1Fr3AuerSKdL0ZUZx1l/zU8P6nqNjL2XUvRy1nWlubF78pB5/UDLoKNQGSIZ+/qBXbvbRKSQ\n2YIbNFbNwJUVJw4eDZ3V5HDGRut7WTGznckqUrYzbJ9cgcqdiUSkUVTgDTlb1ifrrp3Nwoki\nbzYiXRQ4yDGM6mdMMzbvYzIeHH3ucqKq6VvwIJEeoVuzexPXcb6KpE/I/BfO8IPPrN9snmrV\n9VWyVxG6rrxEFdMuM/eAhqbvv5997ukfLSJdT7fIMPUSESlktpAGrzTP3fCB5TtDZw1wAd1j\njjwhK2b2M1lECp7hzJgxW9P7sykSkWpTYLvRMatINgsnirzZiNQwcHL8RYpfmT7tW8o4QLGy\nXwGKb78g49+9IJH+nf6eLue8Fen3apQn8I/s+3nlOPGngb290y2oRmrWdeVIAk2l0nzOX19G\ncebWZBIl/W4R6SOKX8/Dl83D3yGzhTQ4iRJlPV+XYHyyCpk1wCjKL+3tLiorZvYzWUQKmaFC\n4NrqryjuV9Zigp6zSFcF1sm1GQcbMl9hs3CiyJuNSMPpERn+UYouM/PoJ2pTKXnNyZnJRBfc\nYxExWKRW5mF513PeiqRvNqrd8uXlK/7bgaikrBXXUp6xq/d9Up/oCz2bdeVGKpT+r19Pirtr\n8aH1I+PoYd0ikn4TXTD7xw3j85Si2llnC2nw78up6Etb9/63AiWfDp01wLHiVHDims0vlYgv\nKic4s53JekI2eIaBlHfkqsN8yvcanbXofPpsjiLdQUkfnE7dMTq/sWBSQ15ht3Aiz5uNSPPS\nz+q+G095B0/738qPHi5PeVmWbcONKtWecSpodqtIZwvHRXaN47nm/BVJ31oj/ZBS840y4Zdr\ng6+CCVlX/ms8Fbge5rcugVcO5keZIh1pIVNbj6MmWWcLbXB7XfPJSjuzzJpO+iU3zzeSFTPb\nmawiBc9wPP2Kn0v5fYcQJVydo0i/Gu8Wl0B0w6NERb8JfoXdwok8bzYiHctTPLDf9k7J9JqU\neo0fd6aEbt+EFs4q0gaPHLQ7n0XSU9/qclGBCxr2zjhZmDa906WFGw81vxKTZV35oyA1zHjt\nO92rF7y8i3kSJlMk/e/Hmxa6ePyZf9ONWWfL0uDpJ28oW7LZI6eyzpoBXwRa4vpFeqPARaDZ\nzBT8VfOgGf6c1LRiviqtZshlsQdvLFy4a86Hv3+7p1bBEu3m6H9cn7/kd8GvsFs4kefNRiTj\nw2X6da1HJ113UYFitW963lwqwx7K5ot7VpEm0BNZZ3Aj57NIyjl17KQ50t56AhLY8ln6gZeo\nuaJAlmuP3QlEioKJgQv49ifQZ+c4irdIq1b8tKMXrqGBiqPkFhApCnYm0gN/6Gnr6lLt1HOd\nxVu8RrMdva5Pvh1qg+QaECkaXounvOULEFXcZj8vsNK6kpNN0pY8dt8Ldg0QKSq29K5e8JIO\nE46d6xyeY2f+yQ5e1amGsz3CcwBEAv8Ih52cDtp3XHmO3AIiAaAAiASAAiASAAqASAAoACIB\noACIBIACIBIACoBIACgAIgGgAIgEgAJiE0mz44h+xnYeJ/z6d640i7gC4goRxP0NImUL4gqI\nK0AkxyCugLgCRHIM4gqIK0AkxyCugLgCRHIM4gqIK0AkxyCugLgCRHIM4gqIK0AkxyCugLgC\nRHIM4gqIK0AkxyCugLgCRHIM4gqIK0AkxyCugLgCRHIM4gqIK0AkxyCugLgCRHIM4gqIK0Ak\nxyCugLjCPyhSmi2RzOOE3GoWcaXdXGr2vIub+es+2CJZQVwBcQXs2jkGcQXEFSCSYxBXQFwB\nIjkGcQXEFSCSYxBXQFwBIjkGcQXEFSCSYxBXQFwBIjkGcQXEFSCSYxBXQFwBIjkGcQXEFSCS\nYxBXQFwBIjkGcQXEFSCSYxBXQFwBIjkGcQXEFSCSY9wS98e3D8jwwH7t8Cefh53NLXEjxGNx\nIZJzzn3cQ9s17cWmdaha1aptZjzSqHiHakStq72kff9ay0s7d+y/N2jmIzvu2a48q3YeL93o\ngEiOOfdx70qofwllpWNFc3jV21M0bf/qfebMB6tStdlP9j5w7uKG42CPXg0GfLAzeGI2S3ev\nduDJUct+ie3NIJJzzkeRpuatNntXTdal3CWDGjdt0TZvcWrZ+6bxt1K1AsbE8sXLVrjAGA74\nuhIVHzH2rp+0Q6Mpjme/ev+5iJsDC3tVE+2L3PnaxLkH9m4/bE42l6417OyEsuWN+So92fDy\nV1d9eGCftnPi843HTW9fdMTUPf9c3HBAJMf8w3FXH7I82JpgrFL5KM+FrUdvCUw6/LnMsOXA\n61R80trdu7RNzYniEwMbpwnGVmpu50SKp7ZP9v486s3S1kOasWGb9In56NDr497NaCK7uHs3\nadrcB8fYt7t/1zIjWPzN7Ycnm0ET4+o2nrD8tWn/O6Iff79f3aTJgff5Zfa1xYynL746n8wW\nTyWL1MncGles22XESm3zT9rm+W8s2Xhocw7/WPhUpA0Nph101jEL54NImybEDcp8tKo2Xd/S\nWIGmZNvA7GWBkbUvEBWY3+WCeF7Z8vX/S/v4P1+W4vF6rXbnEODQ2AHmmnhg/ewf97dNnt28\nUZ42t+WrUp2K3XT3fz7Txtc2mrig1NBdYeJufyKJmhYytn8TVgfW6L0HtfUjU1551Xz0Wflu\ndx04uOP95aumVzZEr3//8zL1tsTCcZn7p8XKFZNhkxbtH39h57gSRHH95kww3vKhKmNfakCF\nxDoa3LthtQ9bXiwP6pG5zaUEKj4mrEqxrwyHP594w60/hk51uUhvEtXOqeYRcR6I9KCxisTP\nH7xWHnzToQCVW7ul67CHDtu19dmr24y/axc1LF1rjRn320tldSvSbs0vc25/Y/T8DaEvWX9f\nE6I2D+7V1r/bmKhQ3iwfwS431vI2FxojLZda4+6ZtPCAtuW/s+970/yIltjWWNkLVbzj1pe+\nml2wVrviPK3vzD3bNrbgJvOWSG+uxb70d/706017lm16vl/txKQ6BY3+XtHs8dFmW3mMlsZ+\nZQm5YseUp8Y/vvFb89Gu51+cPSCO4sskUpVmlxflV1R+7JkVT3e58z8brV3bEWbpRsq3MxoN\nmXj7Ndx+8RZdOnUZPSjl+ssHv7fpJ23dsyM22778HIq0trSR+X8Ou22wZx3/9b5IcxMorqHx\nD3B3fvChsXdzycqom82I++OPnw/gz08FzPW9xewXBzTqU7fuE1OaPNuh3pMDrzL+YS9JNOgD\n3iIYK2VcFSqev811tQa8Mmnue+P6lzPW8BEbtZ2zn7yYyn6nbTfifvDerqkLPi5CVGMSf4iJ\nowvHr7hp7EZtdqLVv3qDysquG39O63eR8bd6Al10y/zvfs4addsmbdfS9fKP/sbHnhp4c8O4\nUm/szTpbMGtHP6f9xGYd+nbZ4voZG7aUq/qsXL1v3+H92qZGCZ0+iWZl2Lt3sfEv1a5hz054\n9r6UK0td3irwj0rp9o/dGm/tWh5jNY1batveORTpXY75acQ9z0K3/Lw587xIB2tRp437jLWb\nWm05/E4lKvfwtuibDYr7QnVjTchTqnqRLNsbovyNFy8zNyClZ+1ftnDRz+v278g8VLZ/wZvv\nm2PftqBiiXmvvf19/uRl/GfubRUtTjelf2zbtnfCrNtHVE0s0XnixBnGh50v7ixjzHLtIz9q\n+1c8Pv/Q2rXWj305xV20M/yM2bJ/duPL6Yp/3X9tvJgdl3Bp4mWy31dj5d/agS9Hpyx88a2c\nPzPs7Up5S1H5S66pZlkyHQd0b3zPi7xLu2b2Yy+P7z5u1lvzRrS5tDgltXzhhG2ocyjS2xz/\nEdsXhqU8vaxpz8zytEgrnuremSpu1bT74xoZK+qDxsrgQKMscafMfsXYXO+eMKV/njzVr6Le\nPYgqtGw0sHKL2+Qfrll5Czf6KvuGMjj8r8AKdiHvLd50YP6AZk3Xa989lMMxtB0PfLjGUVwH\nyKZu/kvzBseXzy8fn5rNu7s4lRj+eoqZuvGYEc+u1rYaC3N/wKmdn6wxP1t9MP2eAsYOAF0g\n7t1y3c1dhj+/dOarW8O91bKtLv+M9AZ35H7bF4Zjv7Ev+8vexET7ra4T/gmRful+jWw0phnj\nhzZqs8oaK0Th8Fcv5ETYuLu+136afkD7fkLQTtaaSA4pf/3JE3dVoc6Hd323dLzis70Kl+4e\nbe9nr//04TZDl0P38yYq72V98tW/QmyKp6I3J8VVrv3MU53bTTA2wzVWadqBHjxTxdWH1x5a\ntvTVUZHtRbtbpFe5ryMi6kh2bDVe/cAaot6OW8gJ21LvvCfwAfTZedG0axFp+KW8t1SO2qUf\nVfihHJVfEk1jmeSW91v+m+UIlgpyK+6Xk+r3fVvT9ml7n+58Q4NieWR/NH3frUpeKtnl5ioU\nn1zDbnMcirtFepl7NyTKLmWygvdrjUXVLGPKovZhN89Rk0OpVx5ea+zV307D5dGuuIqZR2P3\nT/3Jpt1MkZ4wdi7a9J99aFrmvtzUhmvVx40Jb38C3b/vq+Gz93w4pVnH8c80H3Tw8L28Mboi\nwt1PK+4WaQaL1NcY2ZbDJ8MbbwnzxC8fBP6hKZdx9vAeesE2RqSEL/WT1ITyt38zgYqv6vWi\nfNJ7JvBM7wbX0L027Zql3v7m/SOSqPZn/0Dc2PC2SFlYM2Xc89kcSLTF3SK9yBr8y/Ao3x1h\nX/UL0b7sn2lCVN08D3FPYIuwsSz1/sg2R4SEL3VDedO8csKmwuFDjYla8OTvuw/k6QVtPk1I\nqZ+T46stcjispS5ubJxnIjnF3SJN4bWp4mxtGXUI+6oFROv3V7o76xO/GDt1jz5IcjpvgDnp\nLT4Y+oFtkMgIV+r9jyUR1b/NMOZV3vl+fwJR2bghP2mb+sj+eCW6y5hpy8FFK/iIXDanVLnU\nw0XFinMVRc0pbqxAJMHdIk0iqknUUltC14Z9lbHGztlAjbM+sd1YFae+S5TvOmPr8IV8Iu7A\nq2dZ2yCREa7UjxPVqDFHq1NghTYsUU5j/MdwqWoNPp1X/bFFq+PzjPtsft5bCxaf+lF1Kntt\nlu2TUerdiVRnQuePdihKmmPcWIFIgrtFepZoK1EjbSFdtDHblxikEF38El1mmTLaPGP4OSVe\numdzUvu56/lUYWnjU9b8JNnb+sE2SUSEK3U5uoAP+exhQ7593di3rPDz4X6yhWki0txFVKgC\nP0yQ3bfhWRr4Y2cj6qH86w4eWzM9FtflIj1FpfYQ1dU+I3oq3KvaGCtjSSqUcQz2+wpUY7NW\nveeIONmhMz4d/Xolr7Dv8gYpoUWh+GxWXUdkX+r9jamWVfpJZep+aQzeqRhX90XzMpdD/QIn\nBI3/G7VPKnFN+z7dvtyVPv+W+2uUqEb0iZqMtnFjByIJ7hZpAj1/KI6qa3OIHg73qqbmaplx\nIREfoKjfjuLLEY00p/z6GG+IRmtaLeqzf8c4Sojxu2Fh4zJPmocZs7Ap8yDHwbca5Jtw7+CN\nefIuPqQFrg7I95Kmfd38tvWaHI+gUUoSRhA3diCS4G6RHqfpWiJV0abmcH1DXXNNvCf98WMZ\nl0ble8+c8uvpVW2JemiHixX/1lhd89DXtlEiIdtSH2pLBe3P5e2X7ef4J40/K69ulTexOFH8\n69pNRIXrJlJ80zbKjixa8Nia6bG4LhfpEZqlFaEL+aDD9eFedXnBKmxN3B1VKq5Z9X+rtEEZ\nIjUIzGEsu49vjWtsbN/q88PbYzjFm3Ncg39R4ai/grp2/5d5L6dLniiRny8VLT0Ja6bmubgu\nF2kczdZKUXHtaaKrwr2qYhk5Fsd7b1dXpfajk9I9iks/ZC7LrlzZwxcaWyVNLil/zzZLBKTH\nPfROpjqHi/Jpr+jZo/G3XK7dfmO+xFexZjIei+tykUbTa1pFStw+gejycK8qUfl+yqRiRaKO\njYyRelW/Sj96LMuuCU0kGsYPDxfiz0uxE4i7+Doqn/FN1UV0ybLwr8iJbxMocYF5bARrpua5\nuC4XaRS9qVUlmvioYUiYF+2m6ocfqX6r5UvKBQ9+02Byd8s5GFl2vfipsfL4RmpvmyUCzLhr\n+Rh2rdUBlerSHU6bW70wcKQOaybjsbguF+luekfrRlS8AVGJMC/aRC15MJXoggtMkRqGziLL\nbr6xwl9ofgFhe968C2zD2GPGvYdvQkL56Que9EN8/vkxt4s1k/FYXJeL1IPe1wYHtjPZvuT9\nxauoC49sJ5oe+MJWlquFzGXXivJ+F5hQn26zDWPPkb92a1r/RLp124DApbXatdkf+o4OrJmM\nx+K6XKRuNFdbUN48dJDtjT4Sa71tftvocGKpw1Mo7kZKbpjlXKa57O6gcukTxmd3RVHUHOlX\n6P3n4qjSbm0/f/luoqatT4xTcHUc1kzGY3HdLdLa6nyGX05ZxlN239jcR3QvDZbR5Oba3oJV\n52SeT8rEXHbPUe30CXvKFrcNY8+0Ivxlp/jJxuiS0Z0ocYU2nTopaBdrJuOxuO4WqTHRGuPT\nDYtUhIJuVPDGENlA7SRqHVDnlwPGFmHXwae3aFkwl92eSZnnYVvSfwJj++fb3tIqmOevbFKJ\nb8Xx7oXy5UqabU4+0JE6f5FEr0fXWLZgzWQ8FtfdItUgWq9p38lhbcr8ZujWKi+1Jbkf24bA\nRXQ5k3XZDSEKXA/3BL1jm8vKvsrGO96i/e/LzkSX3RUX91xGqAsKGJsnFd+/xZrJeCyuu0Wq\nTrTJ2M6wLTXom4zJn9INzWkxnwX9OOgqu3BkXXYziBIqypdue0ZzWdv+13/uyyd+i7RJKl6U\n7v7rzONPZz7Z02jzmfCvjRysmYzH4rpbpKpEW83vFVETyrx3zruUvyyVu1iTY88R3EAy67I7\nxGeV5MxpE2oR4SU9669b8AR1LkC91naUfbrrQuK+QqTmbkVYMxmPxXW3SBcT7TA+3PBq244y\n78QzyjzMbQjQ1RgUtb0PVDbL7pdEY2/xkKb9bHzQqTfP7nYkzIpLqR4fX79opfY8UcG8NCEk\n7s/Jd0XQTARgzWQ8FtfdIlUi2mVsPviqhZ70X2PbZE6+zRRps6a1NwYP2Lab3bLjryit0vYP\nkJbyfGHbBt/RJ76gMe9cY9uUN3Hhkh4bPFZqxBV8KVJFIr6hS35j/X2IOmiP512hab0e468b\nMF9rWnPKm+db23azW3bvNytKI0cXrUGVWdOu9ofuuvN9efNdNp7nXLI627iKwJrJeCyuu0W6\n0LxB0AXGGvyMMTqI3tUOx9XSrjdFqlfx44p0VbJ9H7Nfdq9QnsJECZ/O599HaWD7Qat+/LI8\n9Jx1isdKjbiCL0UqQ8RfZi1HVGEa0fb2VGvnPspb4srA7+DQtXlK/xLBt12zX3Z75e7o5Y2x\nOXWJ+ufcxOrphctoY64OujuWx0qNuIIvRSpJxKtuFaIrXyf6vjXRx18T32G2Rx4Kc4FqdoRZ\ndrO5kRQe21uW6N85tfCOsW1sYxtXEVgzGY/FdbdIxSmeB1fQNes+IFranOitN+W6uwMrAyJ1\nj6SP4ZZdK6rY2DwJtbEa1cqhgR38KW2CbVxFYM1kPBbX3SIVpQQeJNN2vo/QF42IOsodrBK1\ng4HffBoQSR/DLbsni05NH51AiTmcTuJfl0laYRtXEVgzGY/FdbdISZSPB83oR/7+3NxkvlKI\nKaZpU6bLaI47ZOlEsOwOtCe+ZUmYT1wP070/ZD2u57FSI67gS5EKUGUePMN3yS9N/61FVFBE\nqsFT5dhdRNfkRLLsnqQntIUzC9TP7rm5F1J2XwT0WKkRV/ClSIkVMi+wG0xPXp7+ZXL5Wl4P\nHovoPt6RLLvPKI5/1zS+b/9b24fe5LRX9vt9His14gq+FClPnczxSZbfg5JLRe8geqx7RL9x\nFcmy22P59e5pQc9sGFKVst1QeazUiCv4UqQ4y9nWGZkrOr3BE8ZQlUh+nVGLcNnJN9rzSfOX\nWqffU5ioQLZ3lPRYqRFX8JNIh+4zr/Q+aN0S8HHvC/ObIsmPP061/cWudCJbdv+NK3//F+1v\niiOKW8iP97a6cer+Vz/hc79Vc4yrGqyZjMfiulKkNeb9TLT91lsrfMjfpbiEqApRcflFtQPv\nRfqDDREuu4lyffnGAvnN2yNPIyp3K8VT8e71sz+k4bFSI67gJ5G+o44y3Gv58VdtoSFS59pU\n/d3MWxFHSnTLbvtS88eY7g7sR4a9maTHSo24gp9EWhG4geNOuibzyeX8XYpmdNViarEhyj5G\nu+zKFeeTRs3kGgqisDeq81ipEVfwk0jf0g3G30O3TzDv/WjCXzjv146aanN3R9vHaJdde1pp\nhIhLmN6fLpsd/teQPVZqxFvR6dYAACAASURBVBX8JNIyulJjcy6zXij6gyHS4C4hh6YjI9pl\n9zDdsrdnEeqgbWoyNYfZPFZqxBX8JNJSvgZIW0sVqF3mkwcMkYYNNA/YRUm0y+5joppFAgfZ\nc8BjpUZcwU8ifUZJxt9VVJL6WJ7NRzRy/eQo70InRLvs9l0oV8Zmc4e8IDxWasQV/CTSu1RA\n40MOSUEXd5fJ4Vf7cibqZTe/PVGS7YXlHis14gp+EukdStjLh+kSaJDl2fn3hv8d2ZyJftkd\nmpwwzHYmj5UacQU/ifQW8Y+kfGPsXg21Pr3vCYf3MXWy7LbYn+31WKkRV/CTSG/KyRv+Urn9\nZiESUGoGcQU/ifQG0cf8K5JEd8bcPwalZhBX8JNIrxPfVpWvCRoZc/8YlJpBXMFPIj1L9L6m\nfWGIlM2PHTkApWYQV/CTSE8S/9bKZ+T4eHcIKDWDuIKfRJpA9Cb/eEvgq7Axg1IziCv4SaQn\niF4zf/toSsz9Y1BqBnEFP4n0uPyg5DxDpBdj7h+DUjOIK/hJpEeJZmraRKIof5YyHCg1g7iC\nn0R6hOglTRttiBTJL4DZg1IziCv4SaSHiaZq2oNk/hZF7KDUDOIKfhJpHNFkTbufzN+iiB2U\nmkFcwU8ijSX6P027l6hwzN0TUGoGcQU/iTSG6ClNu4uoW6y9M0GpGcQV/CTSaPkxohFyyEEF\nKDWDuIKfRHqQ6DFN+zcNiPp+QdmDUjOIK/hJpFFE4zWtNX+XQgkoNYO4gp9Eup9orKY1Dn9r\nxihBqRnEFfwk0r1ED2pag2x/3csJKDWDuIKfRLpHvj9Rn2/coASUmkFcwU8i3U10t6ZdSgtj\n7p0JSs0gruAVkdLe6N93Vqo5fvDRHj2fPhq9SHcRjdB+iKdFMffOBKVmEFfwikhv91i+svcs\n06k7H9jw9ZCx0Ys0gmi4tpEo29/JcwBKzSCu4BGRUnsv0PUl3f7k8Z9TjFd+2eEvJyIN1dZR\nPjWXrKLUJogreESkn1I0Xf89ZTOPH/rI+LO8W2rUIv2baJC2lirH3LkAKDWDuIJHRFrb4azx\nt/PSwMN1c/vM4eGp48ePnzhix6/6GRkOJxpwZA1dYvuCCPntb1UtBZEeVzWIy3gs7pEI4mYe\nLrAXaUkX/ttrfuDhC0P+tYiHo5OTk9vYvjide4iG6DupesQvAMADnM0YsxdpdYc042/nJRkT\nlvK+nv7y0KFD7z1ji54mg5FEfc9spivsXxAhacpaCkLPpXYRlzn/4p6OQqRdfIDhVMoGHt8u\nO3hdMqSy3YdM3y0eStRdWxb4IVkFYC+eQVzBI5+RUnt+pevLu8pRu897/K3rJzp8H7VIg4m6\naF/TrTF3LgBKzSCu4BGR9Df7btsxcKauL5yvH+/9zI4tY4ZmbNBs3yh92Q0iullbQr1j7lwA\nlJpBXMErIqW91r/vTONT1ZiRur5vfM/eEw9nPGX7RunLbiBRkwOLgn73MiZQagZxBa+IlAO2\nb5S+7AYQ0UtfUb+YOxcApWYQV/CTSP0NkSa+SbY/4hopKDWDuIKfROpriDThlaAfkI0JlJpB\nXMFPIt1miPTobBoSc+cCoNQM4gp+Eul6Q6SHZtGImDsXAKVmEFfwk0htDZFGz+A7CakBpWYQ\nV/CTSNfyb/W9RE/E3LkAKDWDuIKfRGptiHT3VHoy5s4FQKkZxBX8JFIrQ6Q7p9DEmDsXAKVm\nEFfwk0gtDZHueJaeiblzAVBqBnEFP4nUguJp0AD+RQo1oNQM4gp+Eukaykf9b6NJMXcuAErN\nIK7gJ5GupiS6rSc9H3PnAqDUDOIKfhKpGRWnHj345y/VgFIziCv4SaSmVJq6dacXY+5cAJSa\nQVzBTyI1pvJ0SzeaHnPnAqDUDOIKfhKpEVWmDl3o5Zg7FwClZhBX8JNIDakq3dCJvo25cwFQ\nagZxBT+JVJ+uoCoNaW3MnQuAUjOIK/hLpDpksC7mzgVAqRnEFfwkUj2qzyJtiLlzAVBqBnEF\nP4mUHNeIRdocc+cCoNQM4gq+EOndy7bwsG6eq1mkrbH3zgSlZhBX8IVId5k/ZF4nL1//Tdtj\n750JSs0gruAnkWontGGRdsTeOxOUmkFcwScifcrDWol8+xPaFXvvTFBqBnEFP4lUM197w6Mi\nB2LvnQlKzSCu4CeRauS/2xDp0tg7FwClZhBX8JNI1QtoZYmaxN65ACg1g7iCL0QaSZ/wsHoh\nrQJR89g7FwClZhBX8JNIlydplYlaxt65ACg1g7iCn0SqWli7jKhV7J0LgFIziCv4SaTLimrV\nidrE3rkAKDWDuIJPRPqYhxWLabWI2sbeuQAoNYO4go9E2kMXaFcRtVPQOxOUmkFcwRcijRCR\ndlNxrT7RjbF3LgBKzSCu4AuRzC3Sj1RCu4GovYLemaDUDOIKPhHpI2Owi0pquxKog4LemaDU\nDOIKPhLpByqlaQWpo4LemaDUDOIKPhJpB5XRtKLUSUHvTFBqBnEFH4n0BpXVtBLUWUHvTFBq\nBnEFn4j0oTEYS+U0rSx1VdA7E5SaQVzBFyKNEJHGUHlNq0jdFfTOBKVmEFfwkUijqYKmXUw9\nFPTOBKVmEFfwkUgPUkVNq0Y9FfTOBKVmEFfwiUjzjMEoaqppNai3gt6ZoNQM4go+EukBvqih\nLvVR0DsTlJpBXMFHIt3PIrWkfgp6Z4JSM4gr+Eik+/gU0ns0QEHvTFBqBnEFn4g01xjcQwM1\n7Su6I/bOBUCpGcQVfCRSfxqsaYcnbVTQOxOUmkFcwRci3Ski3UpDFHTMAkrNIK7gC5HMLVIP\nGqqgYxZQagZxBV+IZG6R/qXw45GAUjOIK/hIpO40TEHHLKDUDOIKPhFpjjHoRsMVdMwCSs0g\nruATkT7QWKR/K+iYBZSaQVzBRyJ1pREKOmYBpWYQV/CRSJ3N36RQB0rNIK7gG5G++OgWWqWg\nYxZQagZxBZ+I9L52RYlOtEZFzzJBqRnEFXwi0gfaJYU70loVPcsEpWYQV/CFSP9mkQrdRN+r\n6FkmKDWDuIJPRHpfu7hAB1qnomeZoNQM4gq+EOlOek+7OLEORMoNEFfwjUhVEgrSehU9ywSl\nZhBX8I1IlfMUoA0qepYJSs0gruALkf5tiFQpPh9tUtGzTFBqBnEF34h0ESXSFhU9ywSlZhBX\n8IlI7xoi5YVIuQHiCr4RqSLF0VYVPcsEpWYQV/CRSETbVPQsE5SaQVzBNyJVMETarqJnmaDU\nDOIKvhJph4qeZYJSM4gr+Eak8oZIO1X0LBOUmkFcASI5B6VmEFfwiUjvaBcaIu1S0bNMUGoG\ncQXfiFTOEOlHFT3LBKVmEFfwhUjDDZHKGiL9pKJnmaDUDOIKvhGpjCHSzyp6lglKzSCu4BuR\nShsi7VHRs0xQagZxBZ+I9DZEQlzBY3FdKVLRgyp6lglKzSCu4BuRShHdrKJjFlBqBnEFn4j0\nllaSqJOKjllAqRnEFfwk0i0qOmYBpWYQV/CNSMWJf9RcKSg1g7iCn0TqoqJjFlBqBnEFX4g0\nzBSpq4qOWUCpGcQVfCPSBUTdVHTMAkrNIK7gE5He1IoRdVfRMQsoNYO4gm9EKgqREFfzXNx/\nUqSjdhwbTjN+TSK61XbO6DieqrhBk2P637nTbu7EPYq4zDmMe1yRSH/ZMpxu30lEt9nPGRWn\n0xQ3GEA/myvNIq5wHsZVJJLtps/Yteu/xhDpVhWbWgvY+WAQVzgPdu1s34hFWm2I1FNFxyyg\n1AziCn4SqZeKjllAqRnEFXwiUr9Vhki9VXTMAkrNIK7gE5H6ski3qeiYBZSaQVzBLyKtNETq\no6JjFlBqBnEFv4j0nSFSXxUds4BSM4gr+ESkPixSPxUds4BSM4gr+EKkO6jPCkOk/io6ZgGl\nZhBX8ItI3xoiDVDRMQsoNYO4gk9Eum05REJcxmNx3SXSMOrNIg1U0TELKDWDuIIvRLqDei8z\nRBqkomMWUGoGcQW/iLTUEGmwio5ZQKkZxBV8IlIvFmmIio5ZQKkZxBX8ItI3hkhDVXTMAkrN\nIK7gE5F6ski3q+iYBZSaQVzBLyJ9ZIg0QUXHLKDUDOIKPhHp1vcMkV5U0TELKDWDuIKfRJqm\nomMWUGoGcQWfiNTjXYiEuIzH4rpSpOkqOmYBpWYQV/CJSP9ikWao6JgFlJpBXMEvIr1jiDRL\nRccsoNQM4go+Eak7i/Shio5ZQKkZxBV8IdLt1P1tQ6RPVHTMAkrNIK7gF5HegkiIy3gsrutE\nmm2I9KmKjllAqRnEFfwi0mhDpPkqOmYBpWYQV/CLSA8aIn2momMWUGoGcQWfiNQNIiGu4LG4\nbhOp6yhDpAUqOmYBpWYQV/CTSJ+r6JgFlJpBXMEXIg2lrg8YIn2pomMWUGoGcQVfiHQ7dbkf\nIiEu47G47hJpKHW5zxBpoYqOWUCpGcQV/CTSVyo6ZgGlZhBX8IVIt1NnFmmtio5ZQKkZxBV8\nIdJQuuVeQ6TNKjpmAaVmEFfwiUidRkAkxGU8Ftd1IrU3RNqiomMWUGoGcQWfiHTzDRAJcRmP\nxXWdSNcbIm1T0TELKDWDuIJfRGpniLRdRccsoNQM4go+EakjREJcwWNx3SbSTRAJcQWPxXWd\nSNcZIu1Q0TELKDWDuIIrRTrxxZsH/khTKVIHFmmnio5ZQKkZxBXcKNJLhYgWv1HxXWUiDaEO\nbQ2RdqnomAWUmkFcwWUifWn8/zG1eIsWb7447jN1W6QUiIS4gsfiOhUp8X1db1YnVafF+smq\nzdVtkVLaGCL9qKJjFlBqBnEFl4nULc8MvfB4nUXSRxVTt0Vqfy1R4iEVHbOAUjOIK7hMJH1h\nI/2iUaZId1ZUt0Vq35qogIp+WUGpGcQV3CaSnqp3rXCURdpV5haIpBLEZTwWN5ajdruLVH6c\nxowrW3inQpFaERVU0S8rKDWDuIILRdI3tCSDtusi8ygikW40RCqkoFtBoNQM4gpuFEnXj367\n9niEGkUm0g2Gm0kq+mUFpWYQV3ChSD23msOv71ArUmEV/bKCUjOIK7hNpN+PHKEPjzCHHyyo\nTqTrDZGKqOiXFZSaQVzBbSL1oUxaqhOpXUuKL6qiX1ZQagZxBbeJ9NnTT9PQp4XpR1WJNJja\ntaCEYir6ZQWlZhBXcJtIBi0iPVwXjUjXUH6IlCvNIq7gQpGixfaNDJGuu4YKXaCiX1ZQagZx\nBZeJ1OYm4/8MFIrUnIoWV9EvKyg1g7iCy0Sq10LXG2WgTqS2zak4RMqVZhFXcJlITrB9I0Ok\na5tT2VIq+mUFpWYQV/CLSFfT81NU9MsKSs0gruAykRoFoU6kNs1or4puBYFSM4gruEykZkEo\nFKkp7VPRrSBQagZxBZeJ5ATbNzJEao0tEuIKHovrOpGa0H4V3QoCpWYQV3CZSLl1HqkVREJc\nwWNx3XYeqSVEQlzBY3HdtWs3iFo2hkiIy3gsbmwi/Tx79CNv/aZHiO0bsUiN6BcV3QoCpWYQ\nV3CjSKMS+dtIRScrFKkFREJcwWNxYxHpRWo8/6D2RVN6X6FIDemAim4FgVIziCu4UKR6NU7x\n4M+aV6sT6RqIhLiCx+LGIlLhMeZwXBF1IjVvQAdVdCsIlJpBXMGFIjUcag7vqK1QpPqk+s7f\nKLUJ4gouFOm/hZbw4JuC49SJdDVEQlzBY3GdivQwU4NajRjRKi5pljqRmtWnwyq6FQRKzSCu\n4DKRKAiIpBLEZTwW16lIqUGoE6lpPVLRq2BQagZxBZeJZGXhdRBJJYjLeCxuTCK9M7Anc3Fp\nVSINpCbJEAlxGY/FjUWkaVSkIFWqEFf2dXUiNU6OU9GrYFBqBnEFF4pUu8HpA/nX6d+U3KtQ\npKsgEuIyHosbi0hJT+h68ixdH9RDnUiNropX0atgUGoGcQUXilRqgq53vlfXZ12kTqSGdSES\n4jIeixuLSM0b/qaPqafr9xVTKVIeFb0KBqVmEFdwoUifUtE/VsYNHlvsenUiNagDkRCX8Vjc\nmA5/v9L2d/2RBKqy1TIt7Y3+fWcFztCefnFQtzE/RiVS/Tp5VfQqGJSaQVzBjSIJJzadsT58\nu8fylb0DF9890nfFtod7/x6VSLUhEuIyHour+p4Nqb0X6PqSbn+KOCnrdf3PzouiEunKBBW9\nCgalZhBXcKNI2dyz4acUTdd/T9nM47tGGj6l9ZwbnUiJKnoVDErNIK7gQpGyu2fD2g5njb+d\nl2ZM+C5lh/H3h++++27NMTuO865dou1sUXMiVX2bBsf1v3Ol3VyKewxxmXMY90QYkbK7Z8OS\nLvy31/zAw7TPO03j4ejk5OQI7sfajRpemmg/GwBe5GzGmP09G1Z3SDP+dl5iPjp4fzdTqc8n\nT54845QtHaheuXz2s0XLn2fVt8noudMu4grnYdwwImV3z4ZdKcaO4KmUDfJge7eJxyzz2+5D\nHulAdcviMxLiMh6Lq/qeDak9v9L15V3lqF1qnxlB89u+0ZEUqlsmn4peBYNSM4gruEyksPds\neLPvth0DZ+r6wvn6qg7LNhr8Go1IdUrnV9GrYFBqBnEFl4kU9p4Naa/17zvT+FQ1ZqQ+N0X4\nBCJFB+IyHovrrns2pFDtUgVU9CoYlJpBXMFlIgU2P7sXLvjxrB4htm9kiHQlREJcwWNxYxLp\ny9q8X1frK4Ui1SpZUEWvgkGpGcQVXCjS6sQLx8+Z99iFid+rEqkD1SxZVkWvgkGpGcQVXChS\nu0oaD45UulHdFqlmiUoqehUMSs0gruBCkcqMMoejy6oTqUaJyip6FQxKzSCu4EaRHgyIVEad\nSFcUh0iIy3gsbiwiXV/pCA+OVFb2VXMWqYqKXgWDUjOIK7hQpDWJ5R//cN7j5RNXqxPpMoiE\nuILH4sZ0+HvhlXz4u+YXkXkUkUhEEAlxGY/FjfGE7K7PP9+l9IQs0cUqehUMSs0gruA+kU5W\nmRmpQtGIdImKXgWDUjOIK7hPJL1uH4iUGyAu47G4sYi0seL0CC9XjUakS1X0KhiUmkFcwYUi\ndW5FharXYyCSShCX8VjcWERqkQFEUgniMh6Lq+KnLyPF9o1EpMtU9CoYlJpBXMGVIh1+Y/zo\nV/erE6m9IVJVFb0KBqVmEFdwo0gTCvEJ2QKPKN0iQSTEZTwWNxaRXqEm8w9qX15NsyGSShCX\n8VjcWERqWFPuuvXXlY1UicS7dtVU9CoYlJpBXMF9IqXlC9xp9eHCKkW6XEWvgkGpGcQV3CfS\nmYTB5sjtys4jQSQGcRmPxY1l1+6O/HLbk0UFZqsSKQUiaYhr4rG4sYg0rTw1HzasOZUfY/Cx\nqi1SdRW9CgalZhBXcKFIQTdbHaZqiwSREJfxWNxYRAq62WoE30qyfSNskQTEZTwW112XCLFI\nV6joVTAoNYO4AkRyDkrNIK7gG5FqKOhUCCg1g7gCRHIOSs0grgCRnINSM4gruFikhdepFKmm\nil4Fg1IziCu4UaR3BvZkLi6tUqRaKnoVDErNIK7gQpGmUZGCVKlCXNnXIZJKEJfxWNxYRKrd\n4PSB/Ov0b0ruVSnSlSp6FQxKzSCu4EKRkp7Q9eRZuj6oB0RSCeIyHosbi0ilJuh653t1fdZF\nKkWqraJXwaDUDOIKLhSpecPf9DH1dP2+YqpEuhEiaYhr4rG4sYj0KRX9Y2Xc4LHFlP0+EotU\nR0WvgkGpGcQVXCiS/krb3/VHEqjKVlUitYdIGuKaeCxu7CdkT2w6E5lHEW6R6qroVTAoNYO4\ngmtFihzbN4JIAuIyHovrVKRGQagSqT1E0hDXxGNxnYrULAiVW6SrVPQqGJSaQVzBZSI5wfaN\nRKRkFb0KBqVmEFfwhUjtIZKGuCYei+sukbBFYhCX8Vhcd4nEW6R6KnoVDErNIK7gC5FuhEga\n4pp4LK77RKqvolfBoNQM4gquFOnEF28e+CMNIqkFcRmPxY1JpJcKES1+o+K7EEkpiMt4LG4s\nIn1MLd6ixZsvjvsMIqkEcRmPxY1FpGZ1UnVarJ+s2hwiqQRxGY/FjUWkwuN1FkkfpfSLfQ1U\n9CoYlJpBXMGFIl00yhTpzooqRWqoolfBoNQM4gouFKlrhaMs0q4yt0AklSAu47G4sYi0u0jl\nx2nMuLKFd6oUqZGKXgWDUjOIK7hQJH1DS/6tvrbrIvMIIkUI4jIeixvjlQ1Hv117PEKNIFKk\nIC7jsbhORToWhEqRGqvoVTAoNYO4gstECvoh5ggvwbN9oyM3GG01UdGrYFBqBnEFl4n0tMFT\nVaj1PQ93ydvsE5VbJIiEuIzH4sbyGWlKgSU8WFd4ssotUlMVvQoGpWYQV3ChSFcNMYf/vgoi\nqQRxGY/FjekSodHmcGwRlSI1U9GrYFBqBnEFF4rU5PI/eHCyutLbcV2tolfBoNQM4gouFOkd\numrO7t1zkinCLyTZvhGLlG+6il4Fg1IziCu4UCT9uSJ87LtYhMcaItu1K62iUyGg1AziCm4U\nST/y/oSn5hyN0KPItkhlVHQqBJSaQVzBlSJFh+0b8Rapp4pOhYBSM4gr+EWkUSo6FQJKzSCu\n4BeRHlXRqRBQagZxBb+I9LSKToWAUjOIK0Ak56DUDOIKfhHpGRWdCgGlZhBXcKFIx/tfVNIE\nWySVIC7jsbixiDSA6vUbIGCLpBLEZTwWNxaRynSNTKCoRHpWRadCQKkZxBXcJ9IZmgmRcgPE\nZTwWNwaRzpYaBpFyA8RlPBY3ll27t/LPOKtWpOshkoa4Jh6LG4tIHatQUo06jEKR/k9Fp0JA\nqRnEFVwoUrsMIJJKEJfxWFx3nZCFSAziMh6LG5tIabsXLvgx4s9Jtm8EkQTEZTwWNyaRvqzN\n35Ct9ZVKkZ5T0akQUGoGcQUXirQ68cLxc+Y9dmHi9xBJJYjLeCxuTAcbKmk8OFLpRoikEsRl\nPBY3pkuERpnD0WUhkkoQl/FY3JhEejAgUhmFIk1S0akQUGoGcQUXinR9pSM8OFL5+shE+sOO\nk4ZIL9jOFT0nz+ZCowZ6aq40i7jC+Rf3ZBiR1iSWf/zDeY+XT1wNkVSCuML5FzecSPrCK/nw\nd80vIvMIu3YRgriMx+LGeEJ21+ef71J7Qnayik6FgFIziCu4UqTosH0jiCQgLuOxuE5FanOT\n8X8GEEkliMt4LK5Tkeq10PVGGUAklSAu47G4rtu1e15Fp0JAqRnEFVwoUs+t5vDrOyCSShCX\n8VhcxyL9fuQIfXiEOfxgQYikEsRlPBbXsUh9KJOWEEkliMt4LK5jkT57+mka+rQwPcKfGrN9\noyPtIJKGuCYeixvLZ6QW6yITCCJFB+IyHour4qjdwusgkkoQl/FY3JhEemdgT+bi0hBJJYjL\neCxuLCJNoyIFqVKFuLKvqxIJBxsYxGU8FjcWkWo3OH0g/zr9m5J7FW6RpqjoVAgoNYO4ggtF\nSnpC15Nn6fqgHhBJJYjLeCxuLCKVmqDrne/V9VkXQSSVIC7jsbixiNS84W/6mHq6fl8xhSJN\nVdGpEFBqBnEFF4r0KRX9Y2Xc4LHFIrxng+0bQSQBcRmPxY3p8PcrbX/XH0mgKlshkkoQl/FY\n3NhPyJ7YdCYyjyBShCAu47G47vo+kiHSCyo6FQJKzSCu4EKR9nQonWQCkVSCuIzH4sZ0g0iq\nNmSYAJFUgriMx+LGIlLhwZEJBJGiA3EZj8WNRaSLp0Gk3ABxGY/FjUWkES2i+lHzyER6UUWn\nQkCpGcQVXCjSmXr1Js4UIJJKEJfxWNxYRJqbmH7TBoikEsRlPBY3FpGuKv/Cpm2CQpFeUtGp\nEFBqBnEF94mUmmdyZAJBpOhAXMZjcWMQ6UyBx1WLdB1E0hDXxGNxY9m1e6T4SoiUCyAu47G4\nsYh0U+G4S+oICkWapqJTIaDUDOIKLhSpXQYQSSWIy3gsrruu/oZIDOIyHosLkZzjsVIjruAy\nkXLnF/vaEb2molMhoNQM4gouEyl3frGvHU0/oKJTIaDUDOIKLhPJCbZvZOza7VLRp1BQagZx\nBReKpP4X+yASg7iMx+K66xf7IBKDuIzH4rrrF/sgEoO4jMfiuusX+yASg7iMx+K66xf7IBKD\nuIzH4sZ81O7MvE/+gEhKQVzGY3FjEemPfjX1tFZEl/8CkVSCuIzH4sYi0t10vf4FjZxT9HaI\npBLEZTwWNxaRKrfX9eHF/9J7XQqRVIK4jMfixiJS/kd1vc4tuv5UfoikEsRlPBY3FpEu6aLv\niXtB1wcq+8U+iMQgLuOxuLGIdH/CiFqJ+088n9gLIqkEcRmPxY1FpBMd4vJM0ldT1d0QSSWI\ny3gsbmznkY79oetHFp2KzKMIRGpLP6roUygoNYO4gitFMtm3AiKpBHEZj8V1KlKFify3zwf8\n92FltyyGSAziMh6L61QkGpP5FyKpBXEZj8WFSM7xWKkRV4BIzkGpGcQVIJJzUGoGcQWI5ByU\nmkFcASI5B6VmEFdwm0g3v21g/u0MkZSCuIzH4joWKQiIpBLEZTwW16lIbwQBkVSCuIzH4rrr\nTqsQiUFcxmNxIZJzPFZqxBUgknNQagZxBYjkHJSaQVwBIjkHpWYQV4BIzkGpGcQVIJJzUGoG\ncQWI5ByUmkFcASI5B6VmEFeASM5BqRnEFXwh0rW0W0WfQkGpGcQVIJJzUGoGcQWI5ByUmkFc\nASI5B6VmEFeASM5BqRnEFSCSc1BqBnEFiOQclJpBXAEiOQelZhBXgEjOQakZxBUgknNQagZx\nBYjkHJSaQVwBIjkHpWYQV4BIzkGpGcQVIJJzUGoGcQWI5ByUmkFcASI5B6VmEFeASM5BqRnE\nFbwiUtob/fvOSs14+OqfEClaEJfxWFzlIr3dY/nK3rPSH21JOQGRogVxGY/FVS1Sau8Fur6k\nm7kd+n5CJ4gUPYjLeCyuapF+StF0/feUzeb2aO50iBQ9iMt4LK5qkdZ2OGv87bw08HBnQKTP\nJ0+ePOOULdfSIfuZoufPs7nR6qlTeu60i7jCeRg3CpGWdOG/veaHiDQ6OTm5je2L9Tb0u/1M\nAHiTsxlj9iKt7pBmiy8oGAAAELBJREFU/O28JPAwXaQfvvvuuzXH7DjehvbbzuSAE6m50eqx\n4/rfudJuLsU9hrjMOYyb+THHXqRdKcaO4KmUDSEiCbb7kEfa0E8qdldDwV48g7iCRz4jpfb8\nSteXd00/ewSRHIC4jMfiKj+P9GbfbTsGztT1hfMhkkMQl/FYXPVXNrzWv+9M41PVmJEQySGI\ny3gsrruutYNIDOIyHosLkZzjsVIjrgCRnINSM4grQCTnoNQM4goQyTkoNYO4AkRyDkrNIK4A\nkZyDUjOIK0Ak56DUDOIKEMk5KDWDuAJEcg5KzSCuAJGcg1IziCtAJOeg1AziChDJOSg1g7gC\nRHIOSs0grgCRnINSM4grQCTnoNQM4gq+EKk1/ayiT6Gg1AziChDJOSg1g7gCRHIOSs0grgCR\nnINSM4grQCTnoNQM4goQyTkoNYO4AkRyDkrNIK4AkZyDUjOIK0Ak56DUDOIKEMk5KDWDuAJE\ncg5KzSCuAJGcg1IziCtAJOeg1AziChDJOSg1g7gCRHIOSs0grgCRnINSM4grQCTnoNQM4goQ\nyTkoNYO4AkRyDkrNIK4AkZyDUjOIK0Ak56DUDOIKEMk5KDWDuIIvRGpFe1T0KRSUmkFcASI5\nB6VmEFeASM5BqRnEFSCSc1BqBnEFiOQclJpBXAEiOQelZhBXgEjOQakZxBUgknNQagZxBYjk\nHJSaQVwBIjkHpWYQV4BIzkGpGcQVIJJzUGoGcQWI5ByUmkFcASI5B6VmEFeASM5BqRnEFSCS\nc1BqBnEFiOQclJpBXAEiOQelZhBXgEjOQakZxBUgknNQagZxBYjkHJSaQVzBFyK1pL0q+hQK\nSs0grgCRnINSM4grQCTnoNQM4goQyTkoNYO4AkRyDkrNIK4AkZyDUjOIK0Ak56DUDOIKEMk5\nKDWDuAJEcg5KzSCuAJGcg1IziCtAJOeg1AziChDJOSg1g7gCRHIOSs0grgCRnINSM4grQCTn\noNQM4goQyTkoNYO4AkRyDkrNIK4AkZyDUjOIK0Ak56DUDOIKEMk5KDWDuAJEcg5KzSCuAJGc\ng1IziCv4QqQWtE9Fn0JBqRnEFSCSc1BqBnEFiOQclJpBXAEiOQelZhBXgEjOQakZxBUgknNQ\nagZxBYjkHJSaQVwBIjkHpWYQV4BIzkGpGcQVIJJzUGoGcQWI5ByUmkFc4TwQ6YwtLeiE/UwO\nSMuVVs/oudQu4jLnX9zTikQ6asexFnTAdiYHHE/NjVaPHtP/zp12cyfuUcRlzmHc44pEst30\nYddOQFzGY3HxGck5His14goQyTkoNYO4AkRyDkrNIK4AkZyDUjOIK0Ak56DUDOIKEMk5KDWD\nuAJEcg5KzSCuAJGcg1IziCv4QqRraL+KPoWCUjOIK0Ak56DUDOIKEMk5KDWDuAJEcg5KzSCu\nAJGcg1IziCtAJOeg1AziChDJOSg1g7gCRHIOSs0grgCRnINSM4grQCTnoNQM4goQyTkoNYO4\nAkRyDkrNIK4AkZyDUjOIK0Ak56DUDOIKEMk5KDWDuAJEcg5KzSCuAJGcg1IziCtAJOeg1Azi\nChDJOSg1g7gCRHIOSs0grgCRnINSM4grQCTnoNQM4gq+EKk5RNIQ18RjcSGSczxWasQVIJJz\nUGoGcQWI5ByUmkFcASI5B6VmEFeASM5BqRnEFSCSc1BqBnEFiOQclJpBXAEiOQelZhBXgEjO\nQakZxBUgknNQagZxBYjkHJSaQVwBIjkHpWYQV4BIzkGpGcQVIJJzUGoGcQWI5ByUmkFcASI5\nB6VmEFeASM5BqRnEFSCSc1BqBnEFiOQclJpBXAEiOQelZhBXgEjOQakZxBV8IdLV9IuKPoWC\nUjOIK0Ak56DUDOIKEMk5KDWDuAJEcg5KzSCuAJGcg1IziCtAJOeg1AziChDJOSg1g7gCRHIO\nSs0grgCRnINSM4grQCTnoNQM4goQyTkoNYO4AkRyDkrNIK4AkZyDUjOIK0Ak56DUDOIKEMk5\nKDWDuAJEcg5KzSCuAJGcg1IziCtAJOeg1AziChDJOSg1g7gCRHIOSs0grgCRnINSM4grQCTn\noNQM4gq+EKkZHVDRp1BQagZxBYjkHJSaQVwBIjkHpWYQV4BIzkGpGcQVIJJzUGoGcQWI5ByU\nmkFcASI5B6VmEFeASM5BqRnEFSCSc1BqBnEFiOQclJpBXAEiOQelZhBXgEjOQakZxBUgknNQ\nagZxBYjkHJSaQVwBIjkHpWYQV4BIzkGpGcQVIJJzUGoGcQWviJT2Rv++s1KzjkOkiEFcxmNx\nlYv0do/lK3vPyjoOkSIGcRmPxVUtUmrvBbq+pNufoeMQKXIQl/FYXNUi/ZSi6frvKZtDxyFS\n5CAu47G4qkVa2+Gs8bfz0pDxqT179hz6ty3N6E/7mRyQliut/q3nUruIy5x/cc9EIdKSLvy3\n1/yQ8dHJycltbF+sb7gizX4mALzJ2Ywxe5FWd2AVOi8JHWdsN30e25ojroC4guJdu10pxtyn\nUjaEjkOkyEFcxmNxlR+16/mVri/v+mfoOESKHMRlPBZX+XmkN/tu2zFwpq4vnJ85DpGiAnEZ\nj8VVf2XDa/37zjQ+VY0ZmTkOkaICcRmPxXXXtXbeWnaIKyCuAJEcg7gC4goQyTGIKyCuAJEc\ng7gC4goQyTGIKyCuAJEcg7gC4goQyTGIKyCuAJEcg7gC4goQyTGIKyCuAJEcg7gC4goQyTGI\nKyCuAJEcg7gC4goQyTGIKyCuAJEcg7gC4goQyTGIKyCuAJEcg7gC4goQyTGIKyCuAJEcg7gC\n4goQyTGIKyCuAJEcg7gC4goQyTGIKyCuAJEcg7gC4goQyTGIKyCuAJEcg7gC4goQyTGIKyCu\nAJEcg7gC4goQyTGIKyCu8A+KdMyOo8vX287jhOOnc6XZ37wWd12utIu4zNHl39vOc0KRSLac\nTB6au2+glj+Th5zrCNFwOnnQuY4QDaeTB57rCNHwd/KAKOaGSFYgUm4CkZwDkXITiJSbQCTn\nQKTcBCI5J/XLNbn7Bmo567W4q891hGjwXNxVUcydyyIB4A8gEgAKgEgAKCB3RUp7o3/fWam5\n+haxcvrFQd3G/KjrH6QYdMyM7NLo4WK6M+6yFOE5jyzdV//Uwy9Zm8i5K9LbPZav7D0rV98i\nVh7pu2Lbw71/118Yt2bNmrWZkV0aPVxMd8Y9aoRds7LHIm8s3S0pfKFCuCVrEzlXRUrtvUDX\nl3T7MzffI0a0lPW6/mfnRfq4t+RxemS3Rg8T061xmTkPhY19jpMF8f2ETixSuCVrFzlXRfop\nRdP131M25+Z7xMiukcaiSes5Vx+y6E/+9yg9slujh4np1rgGh3scDBv7XGezsmXudBYp3JK1\ni5yrIq3tcNb423lpbr6HCr5L2ZF2890dUm7fkhHZpdHDxXRpXOa5l8LHPtfZgtnJIoVbsnaR\nc1WkJV34b6/5ufkesZP2eadp+pFbZh7VJvY4lh7ZpdHDxXRpXIP9XY6Ej31uo4UiIoVbsnaR\nc1Wk1R3SjL+dl+Tme8TMwfu7pS+dv7p8lR7ZzdGzieneuFMnpo+5fumKSOGWrF3kXBVpV8pv\nun4qZUNuvkesbO828VjGg9s/SI/s6uhZY7o27unumdfZuH3pikjhlqxd5Nw9atfzK11f3tVV\nB2dCSO0zQ4ZLbz+u6yc7r0qP7NLo4WK6NK6uL+vGp168sXRFpHBL1i5y7p5HerPvth0DZ+bq\nW8TIqg7LNhr8eqLnuO83jRl5NiOyO6OHjenOuLo+5SH+642lKyKFXbI2kXP5yobX+vedeTZX\n3yJG5prn3j/RDz/R87ZJJzIjuzR6uJgujasPelMGnli6pkjhlqxNZFxrB4ACIBIACoBIACgA\nIgGgAIgEgAIgEgAKgEgAKAAiAaAAiKSSAXS/OdKoZviZUunhCJp6mo7ZzxSgXpvsm2/WyOaF\nXRO/tJ2W3TwgCxBJJQMowfzm1z8rUoubsm/eTqSFed63nZbdPCArEEklA6jANTLyz4oUrnkb\nkVIbzbCdlt08IBsgkkoG0OP0Oo9kEenvzPvPhIh0MvumIhcppIFodu0yOPu3fcMgJyCSSgbQ\n6WpljuoBkdbcULbcDXwP5HY3PVowT/K8MyMvLXLDHl7T/9u4SINpxhMtOm+8qoqu7+5eucjV\nn2S08k6zIslTRaSgJ7om8M9anSzUTtc/vaZ04TrTMxpoxJ+R0qdZmheRQhr/plXRRu8OqGN9\nol3Ht0tT2YHHrdOyJAtpBoQAkVQygPSFdIduirQw8aIHHriIP6q3K3zBY5PLJ9a75qVB1MFY\n02sWGjz6ChplrK6tLuo9Q99QtMID42vHTQs0MomqPTi4QBVDpOAnPqDXjL/v0Zv6K9Tgiccb\n0DvpDbBIGdMszbNIIY3/L1/tR/rlLVvH+kS7KvnvmNGF+lunhSYLaQaEApFUYoikd49fLSKl\nXXmhputaudpperu473T9BUo+q+vVShtrOi3R9VON8/2styDerLSqZGzE/m5RyPz5t1+LXvW7\nri8hQ6TgJ04l3Wz87VrklN62qLFtOl1koB5ogEXKmGZpnkUKbkOvd8UpXZ9GdaxPtCP+HFTv\nIuu00GQhzYBQIJJKWKT9heufZZF20WM8aTzt1ttdYoxsIr57wZAkY01vxU/Mp9l6i0LGR6ej\n5oxv0RfSxvv0AQ9a0bGQJ/QeBU/ppwoZG47f/zAeHSjYUzcbEJEyplmaN0QKaWMXPWf8PVOk\njvWJdkncSL+S1mkhyUKjgFAgkkpYJP3/6EUW6XOax5Pm0EK9HX8k2Ub89cphLNIIfuIAjdZb\nVDdGvqUA5nfgJtCPPLiHjoU8oc+juYZmfPuNlWO7JucnFokbMD8jpU+zNG+IFNLG5yQ3eqld\nx/pEuxqSvaR1Wkiy0CggFIikEhEptfYFh0SkD3nSPFqQvUgaPaK3qGeMrKUxi4UD0sZTxibM\n4GE6FvKE/leRXnq3ymm6/mhc8r0z11ZikbgBESljmqV5Q6SQNj6iz3hwVR3rExKPRbJMC0kW\nGgWEApFUIiLpy+Juk127x/nBY8YGJlSk1vzEF/SWuboeN49Xb37jD2ljDs3hQRc6FvKErve6\n4Hihh3T9RMJgflTBKlLmNEvzhkghbWyhScbfvy+oY30iQyTLtJBkWaKAECCSSkyR9H5xxWrq\nZ2uW/1XXj5SveTaLSHFLdf3PZkV/DXhwbdldun7y4opp8uKjxeqd1PX1eelYyBO6/jENoZ26\nvpHGGg++ibOKlDnN0jwfbAhuI7V6zT91/WU+2JD5RIZIlmmhyUKjgBAgkkoCImnFqaaxTUio\nPHZM5cSFehaRkgoNH1eLJqd78H3hsiNHVY17J9DIc3TFQ3cWaWaIFPKEfrpYXFNjcKZysftn\nDS5Z9pKFmSJlTrM0zyKFtLEwb70JQypcUt/6RKZImdNCk4VGASFAJJUERNKns0j6qnZlyly/\nVs8q0qyxVxZu+p6evrrqOztVKHr1ZxmtvNO0SN3Jn/AJ2ZAn9D4kJ3K2tCta8V97Xyt9neUz\nUsY0S/NyQjakjcVNirbZfGVr6xOZImVOy5IsNAoIBiL5irRpi4y/J5JGnusg5x0QyV9cU+TL\nE7v/le/nc53jvAMi+Yu9TYmoPE6rKgci+Y0fvvrBbbc4PR+ASAAoACIBoACIBIACIBIACoBI\nACgAIgGgAIgEgAIgEgAKgEgAKAAiAaCA/wdR5NJD7mtBFQAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "n <- 10000\n", "p <- 0.3\n", "\n", "# Générer n observations de S\n", "df <- data.frame(S = sapply(p*rep(1,n), FUN = geom))\n", "\n", "# Proposer une estimation de P(S = 1)\n", "prob2 <- sum(df$S > 3.*rep(1,n))/n\n", "sprintf(\"On estime donc cette probabilité par : %f\",prob2)\n", "\n", "# Faire un plot montrant la convergence de cette probabilité\n", "df$prob <- cumsum((df$S > 3*rep(1,n)))/(1:n)\n", "df$iter <- 1:n\n", "\n", "fig <-ggplot(df,aes(x=iter,y=prob)) + geom_line() + \n", " labs(title=\"Convergence de l'estimation de P(S>1)\", \n", " x = 'Nombre de variable générée',y=\"Estimation de la probabilité\") +\n", " theme(plot.title = element_text(hjust = 0.5, size = 16))\n", "fig" ] }, { "cell_type": "markdown", "execution_count": null, "id": "3f6aafab-e9fa-42c7-814a-551a970ab050", "metadata": {}, "source": [ "c\\) Enfin, pour des valeures $m$ et $t$ fixées, vérifier que $\\mathbb{P}(S > t + m| S > t) = \\mathbb{P}(S > m)$.\n", "\n", "**Solution**: \n", "On observe donc ces deux valeurs convergent bien l'une vers l'autre, et que chacune convergent vers la valeurs $\\mathbb{P}(S > t + m| S > t) = \\mathbb{P}(S > m) = (1-p)^m = 0.489$ (pour $p = 0.3$).\n" ] }, { "cell_type": "code", "execution_count": null, "id": "3b2575d3-f7f4-41af-8834-218df3283ff2", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "'On estime donc la probabilité P(S > t + m | S > t) par : 0.493775'" ], "text/latex": [ "'On estime donc la probabilité P(S > t + m \\textbar{} S > t) par : 0.493775'" ], "text/markdown": [ "'On estime donc la probabilité P(S > t + m | S > t) par : 0.493775'" ], "text/plain": [ "[1] \"On estime donc la probabilité P(S > t + m | S > t) par : 0.493775\"" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "'On estime donc la probabilité P(S > m) par : 0.487300'" ], "text/latex": [ "'On estime donc la probabilité P(S > m) par : 0.487300'" ], "text/markdown": [ "'On estime donc la probabilité P(S > m) par : 0.487300'" ], "text/plain": [ "[1] \"On estime donc la probabilité P(S > m) par : 0.487300\"" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3dCZxN9f/H8c8MxjCMJaLsqSRr\nEYpKUpFGylZ+KFGRNr9W0Z78ftXvV2i1/EhCGyrJGrJUQmVPCVnCURg7Y77/8/mec+eeu81d\nzvf85+r7fj0ezd3O/Z5zbufpnruTQAi5jgp6ARD6OwRICCkIkBBSECAhpCBAQkhBgISQggAJ\nIQUBEkIKKjBIn99+XmbJhh0n5RbUAsRaDtGPkS77kehQjAMsIOumnnVJRm3z4KfWpc74w55g\nSzpddVzFoqotppULKL+bymW+m8/La7iqgCBtbUZ2F60qmCWIObWQNqQRVRLiwFlERbfbE3Si\nhgfULKvSACmeCgbSZnM7av/eki+HtyKq/meBLELMKYK0vGFDPjGEyv5kHnxKNNN3XzyfavwR\n+dqe1Kfu6OgTJQkka1ntm8+jayioQCAdb0Jpo6yjUwvTTQWxCLGnCJLdXdSVD4ZTnbyL65ff\n6G4J4681/Sv6REkCKaZldXkNBRUIpNeJpviOP0WFdhfEMsScWkh9qA8fvEbNfOfsfHu1uwVM\nIEBSXkFAyqlOjfNObCZ6O8J0B2N/IsKIaao4BvTnNaTQIqxMQksffoCATS3SbZeskE5EW6qo\nkFzfkmEqCEjLiKb6Ty1esIEPckd1OrdU837yuPiVKor/VaPC5/X8VYgHqXyONem1dAUfLOhQ\nMf28W7+RZ62hymJj2+IPm0dPPHtB+lm3bV9Mda2pnZMFDMjl/LdxZomGzx8PnTSvP++rWfTM\nDovyto4wE/m2tWNDrz8nvcbVE05EHuBbfuz7L/n8Srnp1vMs2/NZGddLn88A3eXcW0ScXdDK\nBV224KZaxapd/VHAtpjfTTWTSlsTTaALhNhfhe6Vp8ZTsfURltY5D9+yypuP1+PoAyUovd5b\n5kPL68pmNPjvSRF8+wdeI78NK9LaJFRBQDI3p73B5+26ztq4ir/Fp8z1HUaUyqfXsruv5DR7\nCtE4cyManGpN+jivvbkx/FqB6FHzH9Yr5blnvWJBCpwsYECznS2tC5tuD5nU17dV5Xmpr1tb\nR9iJ7G3tp1r2U5BZpyIOIP+/jq5bhsrUbbGwbkUqVrfursgr43rp8xvg8boZVKFuj4izC1y5\noMvutVe1R6w3VSAkMZtSFpgHf5Sl4ZGW1jkP37L6IJ15M1Eh86Kn3kiR69NPBN/+gdfIb8OK\nsDaJVRCQelPJkPOuo9THv9kyrTHRHMHrW7TI+bMPZY9Op+uFOJfukdO8TiXM/7PPU8pdi7fN\nzSJ6SfC2V7FJnZl7BN9dZb7984onzRtJQgqcLHBAIZpSieFrNo2uQBfmBE9qt68sFRv63cqX\ni6daW0fYiaxt7VQdqjz+113L+zse+oUMYP9/Ddq1i7Qybpc+ygDWzk+k2QWsXNBlHxE98MOu\nH3sTfRbjTRUESfSjmoeF6ECtHWbzm4e1rD5IRN1+yVl2AaWmXL0qZ00TStkdevs7r5HvhhV2\nbRKsICDdSPWDz5pJ9CEfHruCGubKG+ws+dLKU3SGEE9SRfkvfXPeCHeVoBHyKn0pw+CNgSof\n4ZMLKXUFH460IAVNFjigmEyFV/KpZSk0I3hSu4eoqJzk+yJy6wg/kbWt/UK0SJ5sSY+LSAOE\nhRRpZVwvff4D5EEKP7uAlQu6rBdlyVN16aEYb6pgSIfOoQfERCq9zX9T5TuPIEgd+JI5RPV4\np24t0fzQ2995jXw3rLBrk2AFAekGCnmG/2Zqbh1ZQvStXN9h8uQcKizEeqKvzeNbU2ipEE9T\nPeufsgNFaZLcGKz/Bx2tm1icrCohBU0WOKBoRt3t+dYdGTypXSYNsI7cIbeO8BNZ25oxbZp1\n2S32/n+4AcJCirQyrpc+/wH8kMLOLmDlgi67mVrJk/t27Y/xpgqGJBampE4pRxP9t1T+8wiC\nxFuC+IvIeiEsg6aF3v7Oa+S7YYVdmwQrCEi9KDP4rLr0b/vYGfSeXN/v5KnFcn0vovvNv/+m\nWoLB2P/XzHMHyI1hiTxVm163zu4hIQVNFjRgKfrAP++gSa12ytudmye3jrATBTyxdfjHYRkO\nSMEDhIUUaWXcLn2UAfyQws4uYOWCLnuHqPnYzcJZlJsqBJIYQCnWq2kRljZwHkGQdvJ5x4j/\nTTUrx5Cs/Le/8xr5b1hh1ibRCgLSM0R7/Kc+vHdAbm46fWSfbExP+28we31fokrmPxwN5Q50\nPfLXXW4Mch8hJ40+tQZ4QkIKmixwwD98N6csaFKr+UT2Oy42y60j7ER5kObce1l5eZEfUvAA\nYSFFWBnXS5//AA5IYWcXsHLBlw1ON4+Uv3ncwYhrGnSNUEhHzqMyfwlH+c4jCNIuPs+EtFxe\n04YUePs7rhFlwwqzNolWEJAWEn3iP9WSLhOn/OvbjB7z32D2+v6eYv7TuZ4K8ztpKlGlur4e\nkhuDfAbwWKrv8eJTElLQZIEDmv/Df/AvQNCkVkuJ7P/XB+TWEXYie1s7fD1R5pV3/Xv+PxyQ\nggcICynCyrhe+vwHcEAKO7uAlQu57I+RN5Uzt75KX8d4U+VBes8H6fdSRLOFo3znER1S8O3v\nuEaUDSvM2iRaQUA6Xp7q5z1l82c6PSFEnbx74PL0v9D1vcK8x3+K2vPRqwKenPJvDDV8u3a3\nSUhBkwUOaN689tNr2bv2BU9qtSfvn/0f5NYRdiJ7WxtIxSbIV7pud0AKHiAspEgr43bp8x8g\nBFJ+Kxf2sp+HV6azfC+aRbmp8iC9bEPKbUXlqarzbbr5ziM6pODb33mNKBtW6NokWoG8RWgo\n8QtCVk8RzRPiJuulViG+l/vtwev7NlXJPc+6F+/ne2/eqdde+c2xMbSljvIwp6aEFDRZ0ID1\nrdcf+MnRB4IntStDD1tHXpRbR/iJrG2tge85nw7OJxuCBggLKdLKuF76/AcIhpTfygVedmLw\nYOtlVPP/05rYbqqZVMz6V7OrDelVOnt7DbrTf0vlP4/okIJvf+c18t2wwq5NghUIpIO1qJD9\nD8XHheUzkF/Ye3vHW1KdnND/8XuL0Bt0pvxHYwmlWP8eD6MSBx0bw2eUym+rFv+znv4Omixo\nwGGUJm/BH4uYj6yCJrUbSOlyvM2l5NYRfiJrW7vY3pBWOp9sCB4gLKRIK+N66fMfwNzUhorI\nswtYuaDLKtMj8tQ8Ssl7137+N9USe090ZSEL0rp0cyd8LtEs/02V7zysZc0PUvDt77xG/htW\nuLVJsIL5GMVa8ya/6n9Lv32/PVE5uWbXUKEnl2+ffom19xxyD9yOMnz/7HWnlH8u2P3TgBR6\nRjg2BnEjlRn726pnC5WnBqGTBQ148gIq9fb6be9XpkbHgye121+Wir+0Yu3bZ6SWkq8yhp3I\n2tb6U4lPjudsHGQ+cL0qJ9IA4V+QjbQybpc+/wHMTa3T8VMRZxewckGX3UmFB3y/h18MvjLG\nm+pQEaqzNOfP8WVIQjrRSL6NoDdVcezc5TcPa1nzgxR8+zuvkf+GFW5tEqyAPti3vo7vWZor\nrPc+77zGOul7J0cQpPfNi9ZaV/2rs33Nu/mUf2PY21Kee/XTdFnoZMED/nyRdWG1X0Im9eV7\n38uIZnLrCDuRta39aU6ZUoTo+ueJSi2KMEB4SJFWxvXS5z9AX6Iil0ecXcDKBV12wPdunHN3\nxXpT/dc8Zt46dJuENJgq8j/++86ybohw8w+ch7Ws+UEKvv2d18h/wwq7NolVUB81z5nUuWqx\nMk175r3+lzvy5nNLXtrvZ3kiBNKh4tQ077of3FK7+AWdrRcS/BuDODmkecY5z564n9qFThYy\n4PF/XV+xXIvnjoROmhe/E/OMtvNFM/udmGEm8m1rD9crfkabKeJQ2/Ry30UYIDykiCvjeunz\nHWBXu5Ilu0ScXeDKBV12dFjzKkVrtBoV8Nn4/G+qL66uSJT24nqG9G0h+w3L0wJ27vKZh7Ws\n+T79HXT7O68RZcMKuzYJ9bf58pMj+w9bR25wvKaIkqTsVYcLehE87m8D6SX7DXw7itCXBbwo\nSMP+NpB+SaPHD4ncHy+iBjnRp0ZIbX8bSGJ8KhWuVIyoyoaCXhKkYX8fSGJdz9rFa7Yf6vp9\nvAjF398IEkIFFyAhpCBAQkhBgISQggAJIQUBEkIKAiSEFARICCkIkBBSECAhpCBAQkhB7iAZ\n0donjkadJpH2HfNk2L+EN+PuO+7JsH8Kb8b964Qnw+71aHH/POnJsIaIfjP4v54PkJwBkgyQ\nZICUcIAkAyQZICUcIMkASQZICQdIMkCSAVLCAZIMkGSAlHCAJAMkGSAlHCDJAEkGSAkHSDJA\nkgFSwgGSDJBkgJRwgCQDJBkgJRwgyQBJBkgJB0gyQJIBUsIBkgyQZICUcIAkAyQZICUcIMkA\nSQZICQdIMkCSAVLCAZIMkGSAlHCAJAMkGSAlHCDJAEkGSAkHSDJAkgFSwgGSDJBkgJRwgCQD\nJBkgJRwgyQBJBkgJB0gyQJIBUsIBkgyQZICUcIAkAyQZICUcIMkASaYaUu6E3r3G5FjHP8ky\n6wBIcQZInO6QJndbuqznGOv4m0+vWLFiJSDFGSBxmkPK6TlTiIVdj8oTT08KuCzqjABJBkic\n5pC2ZBlCHMxaK0/0nX80G5DiDpA4zSGtbH/K/NtpMR/Pvemh9ln3rOOjq+fMmbMwO1qHxImo\n0yTSIY+G9WpxT3oy7EHhzbiHcjwZ1qvFPejN4maL6OMejAPSws78t8cM/ru34+h9xkvd9ptH\nBzVq1Kh11CuLl8dGnwah07RTeceiQ1rePtf822lh3hnHOs8z/y4cN27c5EPROpJ2UdRpEunI\nSW+GFR6Nm+PJsIdPt8X1aNxTngx7KIbFPRwHpE1Z5o7gkaxV/nPu+cR3LOo+5L60hir2VkPH\nxWMkA4+R7E6Tx0g53c07oKVd5LN2i+85IMThTt8DUnwBEqc5JDGx14aNd44WYu4Mkd396R/W\nDB6Qt2cYdUaAJAMkTndIueN79xpt2hk8QIg9L3a/bZj/CfCoMwIkGSBxukPKp6gzAiQZIHGA\nBEguAyQOkADJZYDEARIguQyQOEACJJcBEgdIgOQyQOIACZBcBkgcIAGSywCJAyRAchkgcYAE\nSC4DJA6QAMllgMQBEiC5DJA4QAIklwESB0iA5DJA4gAJkFwGSBwgAZLLAIkDJEByGSBxgARI\nLgMkDpAAyWWAxAESILkMkDhAAiSXARIHSIDkMkDiAAmQXAZIHCABkssAiQMkQHIZIHGABEgu\nAyQOkADJZYDEARIguQyQOEACJJcBEgdIgOQyQOIACZBcBkgcIAGSywCJAyRAchkgcYAESC4D\nJA6QAMllgMQBEiC5DJA4QAIklwESB0iA5DJA4gAJkFwGSBwgAZLLAIkDJEByGSBxgARILgMk\nDpAAyWWAxAESILkMkDhAAiSXARIHSIDkMkDiAAmQXAZIHCABkssAiQMkQHIZIHGABEguAyQO\nkADJZYDEARIguQyQOEACJJcBEgdIgOQyQOIACZBcBkgcIAGSywCJAyRAchkgcYAESC4DJA6Q\n3EBqoGKVQscFJAOQ7LSAVBSQDECyAiRAchkgcYAUsaPROla0YdRpEul4jifDHhMejXvKm2FP\nr8U9Kjy6GQpwcRVB2h+tg0UbRp0mkQ6e8GTYbOHNuAdPejKsV4ub7c3iHhAejZvjybD7Y1jc\nbEWQot71YddOhl07Drt2gOQyQOIACZBcBkgcIAGSywCJAyRAchkgcYAESC4DJA6QAMllgMQB\nEiC5DJA4QAIklwESB0iA5DJA4gAJkFwGSBwgAZLLAIkDJEByGSBxgARILgMkDpAAyWWAxAES\nILkMkDhAAiSXARIHSIDkMkDiAAmQXAZIHCABkssAiQMkQHIZIHGABEguAyQOkADJZYDEARIg\nuQyQOEACJJcBEgdIgOQyQOIACZBcBkgcIAGSywCJAyRAchkgcYAESC4DJA6QAMllgMQBEiC5\nDJA4QAIklwESB0iA5DJA4gAJkFwGSBwgAZLLAIkDJEByGSBxgARILgMkDpAAyWWAxAESILkM\nkDhAAiSXARIHSIDkMkDiAAmQXAZIHCABkssAiQMkQHIZIHGABEguAyQOkADJZYDEARIguQyQ\nOEACJJcBEgdIgOQyQOIACZBcBkgcIAGSywCJAyRAchkgcYAESC4DJA6QAMllgMQBEiC5DJA4\nQAIklwESB0iA5DJA4gAJkFwGSBwguYFUX8UqhY4LSAYg2WkBKR2QDECy0h1S7oTevcbk5J3c\ncudBQIozQOJ0hzS529JlPcf4Tp24LysbkOIMkDjNIeX0nCnEwq5H7ZOj+wFS3AESpzmkLVmG\nEAez1lqnfrx9BSDFHSBxmkNa2f6U+bfTYnki+/YVv1iQ3ujevXu/k9HKSW8YdZpEysn1Zljh\n0bjeDHsSiysruMU9EQekhZ35b48Z8sTQt4UN6YWrrrrqptyopTeMPk0iCY+G9Wpcj4bF4spx\nPRo2+rj+5+CiQ1rePpfvkRby8Xn9jvsgyaLe9WHXToZdO07zXbtNWebUR7JW8fE3s2SvAVJ8\nARKnOaSc7vOEWNpFPmv359atW7/OWrsXkOILkDjNIYmJvTZsvHO0EHOth0nYtYs/QOJ0h5Q7\nvnev0aeEGDwAkBIMkDjdIeVT1BkBkgyQOEACJJcBEgdIgOQyQOIACZBcBkgcIAGSywCJAyRA\nchkgcYAESC4DJA6QAMllgMQBEiC5DJA4QAIklwESB0iA5DJA4gAJkFwGSBwgAZLLAIkDJEBy\nGSBxgARILgMkDpAAyWWAxAESILkMkDhAAiSXARIHSIDkMkDiAAmQXAZIHCABkssAiQMkQHIZ\nIHGABEguAyQOkADJZYDE6QbpxLTphwBJaYDEaQTp0B11RW4rogt2ApLKAInTCNJD1FbMpgFT\nSt0DSCoDJE4jSNVvEOK+ssdEj3MBSWWAxGkEKf15IRp2FOLldEBSGSBxGkGq2Vn8nvKmEHdW\nBSSVARKnEaTHijxYL21H9oi0HoCkMkDiNIKU3T6l0DCxnM7fDEgqAyROI0hC7D8kxN75R2Jz\nBEgxBkicVpDiK+qMAEkGSJxGkA70rlrOCpBUBkicRpD6UOM7+sgASWWAxGkEqUKX2AABUnwB\nEqcPpBM0GpC8CJA4fSCdKn8vIHkRIHH6QBKT0kedAiT1ARKnEaQONahEnYYcIKkMkDiNILXJ\nC5BUBkicRpDiLeqMAEkGSJxWkHI3z535W8yPk6LOCJBkgMTpBGlOAzKrNw+QlAZInEaQlqed\n/eyUaS+cnfYDIKkMkDiNILWpZvDB3mrtAEllgMRpBKnCQOtwUEVAUhkgcTpBesKGVAGQVAZI\nnEaQ2lbbywd7q7cFJJUBEqcRpBVplYZ8Om1IpbTlgKQyQOI0giTm1uenv+vOjs0RIMUYIHE6\nQRK5m2bN2qTwBdligGQAkpVWkOIr6owASQZInCaQWt9o/pcXIKkMkDhNIDVuKUSzvABJZYDE\naQIpkaLOCJBkgMRpBKn7euvw6/6ApDJA4nSBdHDvXvp0L7fnieKApDJA4nSBdDv5uwqQVAZI\nnC6QvnzlFer3imzkvtgg/RWtA8XqR50mkbKPezLsfuHNuAdOeDLsfuHRuCc9GXbf6bW4f4no\n4+4PB8ms5Y+xAfJ1Mlo5xRpEnSaRcnK9GVZ4NK43w57E4soKbnFPRIDka+51sUGKeteHXTsZ\ndu04XXbtuA/u7M6dcyYgqQyQOI0gvUOZxala5ZSK7wGSygCJ0whSgybH/0j/USwqtw2QVAZI\nnEaQSrwoRKMxQtzVDZBUBkicRpDKDxWi0yNCjFH2q+aAxAESpxGkK5r+JQY3FuLR0oCkMkDi\nNIL0BZU6tCzl7idLK/vOBkDiAInTCJIYd+1B8VwRqrEekFQGSJxOkGTZa06EOReQEg+QOO0g\nxV7UGQGSDJA4jSD93v7MElaApDJA4jSC1JZq9b1XBkgqAyROI0gl744NECDFFyBxGkE65x1A\n8iJA4jSC9GDLuH7UHJBiDJA4jSCdaNz4pdEyQFIZIHEaQZqa5vvSBkBSGSBxGkG6uNKbazbI\nAEllgMTpAymn0PDYAAFSfAESpw+kE8WGAJIXARKnDyTxXNllgORBgMRpBOnGkik1G8oASWWA\nxGkEqU1egKQyQOI0ghRvUWcESDJA4gAJkFwGSJwmkPCLfYBkB0gy/GJfwgGSDJBk2LVLOECS\nAZIMv9iXcIAkAyQZfrEv4QBJBkgy/GJfwgGSDJBk/4+/2Bd1RoAkAyROF0gi/l/sizojQJIB\nEqcRJNmJadMPAZLSAInTCNKhO+qK3FZEF+wEJJUBEqcRpIeorZhNA6aUugeQVAZInEaQqt8g\nxH1lj4ke5wKSygCJ0whS+vNCNOwoxMvpgKQyQOI0glSzs/g95U0h7sQv9ikNkDiNID1W5MF6\naTuyR6T1ACSVARKnEaTs9imFhonldP5mQFIZIHEaQRJi/yEh9s4/EpsjQIoxQOK0gpQ9e+If\nh3JjdARIMQZInE6Q3s4gWjChyoeApDRA4jSC9Dm1nEQL1p6T8iUgqQyQOI0gtWiYI2iBOHz+\nFYCkMkDiNIJU8lnBkMTA0oCkMkDiNIJUdaAF6YEqgKQyQOI0gtSl8j6GtKlCR0BSGSBxGkHa\nnFl9CA1+umLJXwBJZYDEaQRJrLqKv7Hh2lg/KBt1RoAkAyROJ0hC7Ptm5YEYGQFSrAESpxek\nuIo6o33F6qlYpdBxAckAJDstIBUHJAOQrAAJkFwGSBwgAZLLAIkDJEByGSBxGkFa5DsS49u/\no84IkGSAxGkEKfVB+ZG+bVkx3lFFnREgyQCJ0wjSi+nnLRK5b5Ys8SogqQyQOI0giY0tU/s3\npw7bnOflTujda0yOdXzX8926v+L/hv2oMwIkGSBxOkESJ68kuj/wrMndli7rOcYy9cDjq77u\n+yQgxRkgcTpBWnFxyj3tqLvhOCun50whFnY9yse3ZpnXnNP+GCDFFyBxGkF6qND5i4QYV7rc\ne/7ztmSZrA5mreXjuz8z/yztmgNI8QVInEaQCj0q73h2tHOcvbL9KfNvp8X2yR+n3j6FD1fP\nmTNnYXa0DhWvF3WaRDp0wpthhUfjnvRk2IPCm3EP5XgyrFeLe9Cbxc0W0cc9GAHS974j4/zn\nLezMf3vMsE++2ffW+Xw4qFGjRq1F1IrXjz4NQqdpp/KORX/BaHl7/pq7TgvzzljM+3pi4bhx\n4yYfitaR4vWiTpNIR056M6zwaNwcT4Y9fLotrkfjnvJk2EMxLO7hCJDq5uU/bxM/wXAkaxUf\n/1nu4HXOQxV1HxKPkWR4jMRp9BjpBq7thZTxgP+8nO7zhFjaRT54mtXtJH9B+A+AFF+AxGkE\nyW5+RnfHqYm9Nmy8c7QQc2eIAz3/s3Hd4H7HASm+AInTD5IYRI5XknLH9+412nxUNXiAENuf\n7d7zpT15F0WdESDJAInTENLYlMNhzw8u6owASQZInH6QcrIqx+QIkGIMkDiNIMknG25oV5MG\nAJLKAInTCFJDq0sHHwsmA0huAiROI0jxFnVGgCQDJE4rSKp/sa/4BSpWKXRcQDIAyS4ZISn/\nxb7i1VWsUui4gGQAkl0SQlL/i32AxAESpxEk9b/YB0gcIHEaQVL/i32AxAESpxEk9b/YV7ya\nilUKHReQDECyS0JI6n+xD5A4QOI0gqT+F/sAiQMkTiNI6n+xD5A4QOJ0gqT8F/sAiQMkThNI\n+wMCJJUBEqcJJApIGaSqKlYpdFxAMgDJLskgvWL2cg26+uFnOhduMR2QVAZInCaQuNeLyS8I\n+rHkcEBSGSBxGkG6uK91eP/FgKQyQOI0glRykHX4ZCYgqQyQOI0gXXbBIT44XLsFIKkMkDiN\nIH1AF0/ZvHlKI1L3G7KAZACSlUaQxGuZ/Nx36RifawCkGAMkTidIYu/HQ1+esk/EWNQZAZIM\nkDitIMVX1BkBkgyQOEByA6mKilUKHReQDECyA6TEAyQOkGSAlHiAxAGSDJASD5A4QJIlK6QT\n06YfAiSlARKnEaRDd9QVua2ILtgJSCoDJE4jSA9RWzGbBkwpdQ8gqQyQOI0gVb9BiPvKHhM9\nzgUklQESpxGk9OeFaNhRiJfTAUllgMRpBKlmZ/F7yptC3FkVkFQGSJxGkB4r8mC9tB3ZI9J6\nKINUWcUqhY4LSAYg2SUhpOz2KYWGieV0/mZAUhkgcRpBEmL/ISH2zj8Sm6MYIGUAkgFIVlpB\nUv2LfRllVKxS6LiAZACSXTJCUv+LfaVUrFLouIBkAJJdEkLy4Bf7AMkAJCuNIKn/xb6MTBWr\nFDouIBmAZJeEkDz4xT5AMgDJSiNIHvxiHyAZgGSlESQPfrEPkAxAstIIkvpf7MNjJA6QOI0g\nqf/FPkDiAInTCZLyX+wDJA6QOL0gxVXUGQGSDJA4TSA1CwiQVAZInCaQWgQESCoDJE4TSIkU\ndUaAJAMkDpAAyWWAxAESILkMkDhAAiSXARIHSIDkMkDiAAmQXAZIHCABkssAidMI0oHeVctZ\nAZLKAInTCFIfanxHHxkgqQyQOI0gVegSGyBfR6N1LCMz6jSJdDzHk2GPCY/GPeXNsKfX4h4V\nHt0MBbi44SGdoNHxQdofrYMZmVGnSaSDJzwZNlt4M+7Bk54M69XiZnuzuAeER+PmeDLs/hgW\nNzs8pFPl740PUtS7PuzaybBrx2m0azcpfdQpQFIfIHEaQepQg0rUacgBksoAidMIUpu8AEll\ngMRpBCneos4IkGSAxGkFSfmX6AOSAUhWOkFS/iX6gMQBEqcRJPVfop9RUsUqhY4LSAYg2SUh\nJA++RJ9+VbFOIeMCkgFIdkkISf2X6GfQBhXrFDIuIBmAZJeEkNR/iX4GrVexTiHjApIBSHZJ\nCEn9l+gDEgdInEaQPPgSfUAyAMlKI0gefIk+IBmAZKUTJPVfog9IBiBZ6QUprqLOyIS0TsU6\nhYwLSAYg2QFS4gESB0gyQP8N4FUAACAASURBVEo8QOIASQZIiQdIHCDJACnxAIkDJFlSQlL+\nMQpAMgDJSidI6j9GAUgGIFlpBMmDj1HQWhXrFDIuIBmAZJeEkLz4GAUgAZKVRpC8+BgFIAGS\nlUaQvPgYBSABkpVGkLz4GAUgAZKVRpC8+BgFIAGSlUaQvPgYxRoV6xQyLiAZgGSXjJA8+BgF\nIAGSlV6Q4irqjABJBkicRpDq5qUKUglarWKdQsYFJAOQ7JIQ0g1c2wsp4wF1kL5XsEqh4wKS\nAUh2SQjJbn5Gd1WQMugbFesUMi4gGYBkl7yQxCAylN0jLVWxTiHjApIBSHZJDGlsymFl90iA\nBEhW+kHKyaock6OY7pGWqFinkHEByQAkuySEJJ9suKFdTRoASCoDJE4jSA2tLh18TBWkDEAy\nAMlKI0jxFnVGgCQDJA6QAMllgMRpAqlZQICkMkDiNIHUIiBAUhkgcZpASqSoMwIkGSBxWkHK\n3Tx35m+nVEJarGKdQsYFJAOQ7JIR0pwG/MG+evOUQSoBSAYgWWkEaXna2c9OmfbC2Wk/4B5J\nZYDEaQSpTTX5ZtW91drhHkllgMRpBKnCQOtwUEVAUhkgcTpBesKGVEEdpEUq1ilkXEAyAMku\nCSG1rbaXD/ZWbwtIKgMkTiNIK9IqDfl02pBKacvVQZqhYp1CxgUkA5DskhCSmFufn/6uOzs2\nR4AUY4DE6QRJ5G6aNWuTwhdkAYkDJE4rSGYnpk0/BEhKAyROI0iH7qgrclsRXbATkFQGSJxG\nkB6itmI2DZhS6h51kL5QsU4h4wKSAUh2SQip+g1C3Ff2mOhxLiCpDJA4jSClPy9Ew45CvJwO\nSCoDJE4jSDU7i99T3hTizqqApDJA4jSC9FiRB+ul7cgekdYDkFQGSJxGkLLbpxQaJpbT+Zsd\nZ+ZO6N1rTI51/Phbd3Ud/FtckKarWKeQcQHJACS7JIQkxP5DQuydf8R51uRuS5f1HGMdf67X\ntxue6XkQkOILkDitIG0dO+i5SX85z8npOVOIhV2PSjhZPwlxtNN8QIovQOJ0gjQwjd9rV2q4\n46wtWYYQB7PW8vFNA0xPud2nAlJ8ARKnEaS36NIZu4zZzelj/3kr2/Nb7zotzjvju6yN5t83\nunfv3u9ktHJK0PyoEyVQTq4Xo57MER6N682wJ7G4soJb3BMRIDWuIx8dHa17uf+8hZ35b48Z\n9sncWTe/w4eDGjVq1FpEzbxHij4RQqdn/rd3B0IqOdg6fDrTf97y9rnm304LrVO7Hus6w39Z\n1Ls+c9fufRX3siHjYtfOwK6dXRLu2jXtZx32b+A/b1OWOfWRrFXyxM9dX9rvmD7qjABJBkic\nRpDez5B3PIuKP+0/L6f7PCGWdpHP2uXcPipg+qgzAiQZIHGaQHqGq0OtHnywVUqJMQ4tE3tt\n2HjnaCHmzhDft1+y2uxPQIovQOI0gUQBOSDlju/da7T5qGrwADE1SzY9HkgTVKxTyLiAZACS\nXZJByglIxFTUGQGSDJA4TSA5m3sdIKkMkDidIH1wZ3funDMBSWWAxGkE6R3KLE7VKqdUfE8d\npPdUrFPIuIBkAJJdEkJq0OT4H+k/ikXltgGSygCJ0whSiReFaDRGiLu6AZLKAInTCFL5oUJ0\nekSIMQo/ag5IgGSlEaQrmv4lBjcW4tHS6iCNV7FOIeMCkgFIdkkI6QsqdWhZyt1Pllb4axSA\nBEhWGkES4649KJ4rQjXWq4JUkt5VsU4h4wKSAUh2yQhJlr3mRJhzASnxAInTDlLsRZ0Rdu1k\ngMQBkitIuEcCJCtAAiSXARIHSIDkMkDiAAmQXAZInFaQsmdP/ONQrkpI41SsU8i4gGQAkl0y\nQno7g2jBhCofApLSAInTCNLn1HISLVh7TsqXgKQyQOI0gtSiYY6gBeLw+VeoglSSWm1TsVLB\n4wKSAUh2SQip5LOCIYmByt60WpJojoqVCh4XkAxAsktCSFUHWpAeqKIQ0iwVKxU8LiAZgGSX\nhJC6VN7HkDZV6AhIKgMkTiNImzOrD6HBT1cs+YtCSF789iUgcYAkS0JIYtVV/O2Q1/4Ym6PY\nIH2oYqWCxwUkA5DskhGSEPu+WXkgRkaxPf0NSIBkpROkv15bIMRbL+8XsRV1RoAkAyROI0h7\nq9MbQjxA1X5XBQm7dhwgcRpB6lXq3ZPmweIy/1AI6QMVKxU8LiAZgGSXhJBqPmwdPl5ZFSTs\n2nGAxGkEqewz1uHzZQBJZYDEaQTp2rqH+eBog6tVQcKuHQdInEaQlhapN+qb799rlPoVIKkM\nkDiNIInp5/MLspUnxeYIkGIMkDidIImTy94fu/hojI5ie4wESIAk0wpSfEWdESDJAInTCNKB\n3lXLWamChF07DpA4jSD1ocZ39JEphDRZxUoFjwtIBiDZJSGkCl1iAxQ7JOzacYDE6QPpBI1W\nDQm7dhwgcfpAOlX+XkDyIkDi9IEkJqWPOqUcEh4jAZJMI0gdalCJOg05QFIZIHEaQWqTFyCp\nDJA4jSDFW9QZAZIMkDitIKn+En1A4gCJ0wmS8i/RNyFNUrFSweMCkgFIdkkISf2X6AMSB0ic\nRpC8+BJ9QAIkK40gefIl+oAESDKNIHnyJfqABEgyjSB58iX6gARIMo0gefIl+oAESDKNIHny\nJfqABEgynSAp/xJ9QOIAidMH0uEaXnweCZAASaYPJHHR7YDkRYDEaQRpdZWROcohTVSxUsHj\nApIBSHZJCKlTK8qo3ZgDJJUBEqcRpJZ5AZLKAInTCFK87Y2WfIwUdar423/cg0HNxRXHvBnX\nm8X9S3h0M5zwZNg/hTfj/nXSk2H3xrC4+yJCiu/zSCejlWNC+jTqVPGXk+vBoOawwqNxvRn2\nJBZXVnCLeyISJC8+j4RdO+zayTTZtZsjPPo80vsqVip4XEAyAMkuySClfezR55EACZBkmkDq\nWmiUN59Hwq4dIMk0gSTmNvPm80i4RwIkmS6QRI43n0cCJECSaQPJo88jARIgyTSC5MnnkQAJ\nkGQ6QfLi80gTVKxU8LiAZACSXZJBunWhEB3WxGwoRkiZgGQAkpUmkDJv2bqLpuyyAySVARKn\nCaS7yZkqSHiMxAESpwmk3C/feJ0eeN0O90gqAyROE0hcm1WxAYrrHgmQAEmmCaTrZwvRMtbn\nvXGPFFeAxGkCqdSNP22g8RvscI+kMkDiNIH0kCdPNpj3SO+pWKngcQHJACS7JIMkvnl/Ag2a\nYId7JJUBEqcLJLPu62MDBEjxBUicRpDiLeqMAEkGSJwmkFrfaP6Xl0JIeIwESDJNIDVuKUSz\nvABJZYDEaQIpkaLOCJBkgMTpBOnozxuOApLyAInTBtL2+89OIUo5+/7tgKQ2QOJ0gfR+Uap7\n6yOPdqtPRd8HJKUBEqcJpBXFzptvHfu6VrGVgKQyQOI0gfSPjLw32G0s2V0VpEyi8SpWKnhc\nQDIAyS7JIJ3fxg+kXS1AUhkgcZpASnnED2RgCiCpDJA4TSDRYD+QZ1S++xuQAEkGSC4glQQk\nA5CsdIHU8eO8ugCS0gCJ0wWSV98iBEiAJNME0riAVEEyHyO9a7zxHxXrFTAuIBmAZJdkkBIp\n6owsSOeUU7FeAeMCkgFIdvpAqlZWxXoFjAtIBiDZ6QOpamkV6xUwLiAZgGSnD6QqmSrWK2Bc\nQDIAyU4XSOOMKiVUrFfAuIBkAJKdPpDOLK5ivQLGBSQDkOz0gVQ6XcV6BYwLSAYg2ekDKbOo\nivUKGBeQDECy0whSmor1ChgXkAxAstMIUmEV6xUwLiAZgGSnC6SxRmaqivUKGBeQDECy0wdS\nSVKxXgHjApIBSHb6QCpBe1SsmHNcQDIAyU4nSLtUrJhzXEAyAMlOJ0g7VayYc1xAMgDJTh9I\nGbRDxYo5xwUkA5Ds9IFUnLapWDHnuIBkAJKdTpC2qlgx57iAZACSnU6QtqhYMee4gGQAkp0u\nkB7aU5w2qVgx57iAZACSnS6QaFox+lXFijnHBSQDkOy0gfQ+IAGSAUjuIaUDkifDApJMG0gT\n0ukXFSvmHBeQDECy0wbS2MK0UcWKOccFJAOQ7LSB9A7RzypWzDkuIBmAZHe6QMqd0LvXmJy8\nk+86fvY86owkpLcJ90ieDAtIstMF0uRuS5f1HOM7tS4rO15Ib+IeCZAM7SHl9JwpxMKu1v3Q\nD0Nvjh/S64AESIb2kLZkGUIczFpr3R9NHRk/pBFEG1SsmHNcQDIAye40gbSy/Snzb6fF9slf\nbEi/fvfddyv2R+ugvWv3S9Qp4+vgCcUDWmULb8Y9eNKTYU+zxT0gPLoZcjwZdn8Mi+u/U4kO\naWFn/ttjRhCkQY0aNWod9cqCIf2PaHf0KRE67TqVdyw6pOXtc82/nRbaJ32QZg0fPnzUkWgd\nY0hvEW2JOmV8HctRPKDVUeHNuKfZ4h495c2wp9fiHhExjBsHpE1Z5o7gkaxVQZBkUfch5WOk\nYUTrVOyzOsfFYyQDj5HsTpPHSDnd5wmxtIvv1aMEIL1GtFbFijnHBSQDkOxOE0hiYq8NG+8c\nLcTcGQlCepVojYoVc44LSAYg2Z0ukHLH9+412nxUNXhAgpD+S7RKxYo5xwUkA5DsThdI+RR1\nRhLSf4h+VLFiznEByQAkOy0glTIhvUK0UsWKOccFJAOQ7LSB9AjRChUr5hwXkAxAstMG0v1E\n3ytYr4BxAckAJDttIN1G9J2KFXOOC0gGINlpA+kSom9UrJhzXEAyAMlOG0hmS1SsmHNcQDIA\nyU4nSItUrJhzXEAyAMlOJ0hfq1gx57iAZACSnU6QFqhYMee4gGQAkp0WkDItSF+pWDHnuIBk\nAJKdFpDse6S5KlbMOS4gGYBkpxOk2SpWzDkuIBmAZKcTpJkqVsw5LiAZgGSnE6QZKlbMOS4g\nGYBkpxOkoSpWzDkuIBmAZKcTpNoqVsw5LiAZgGSnE6TzVayYc1xAMgDJTidI56pYMee4gGQA\nkp1OkM5RsWLOcQHJACQ7nSBVU7FiznEByQAkO50gFVexYs5xAckAJDudINEuFWvmGBeQDECy\n0wrSThVr5hgXkAxAstMK0g4Va+YYF5AMQLLTCtI2FWvmGBeQDECy0wrS7yrWzDEuIBmAZKcV\npK0q1swxLiAZgGQHSIkHSBwgybSCtEXFmjnGBSQDkOwAKfEAiQMkmVaQNqtYM8e4gGQAkh0g\nJR4gcYAk0wJSLRvSbyrWzDEuIBmAZKcFpIsByQAkK0ACJJcBEgdICiBtUrFmjnEByQAkO0BK\nPEDiAEmmFaRfVayZY1xAMgDJDpASD5A4QJJpBekXFWvmGBeQDECy0wrSRhVr5hgXkAxAstMK\nkuKfNQckDpBkWkFS/NuXgMQBkkwrSAtVrJljXEAyAMkOkBIPkDhAkmkFSfGvMQMSB0gyQEo8\nQOIASaYVpPkq1swxLiAZgGQHSIkHSBwgybSC9JWKNXOMC0gGINkBUuIBEgdIMi0gNbIhzVOx\nZo5xAckAJDtASjxA4gBJphGkQjRXxZo5xgUkA5DsNIJUBJC8CJBkGkEqSnNUrJljXEAyAMlO\nI0jpgORFgCTTCFIxE9LvTd9WsXb2uIBkAJKdRpCK02xjCTVX9/YGQOIASaYRpAwT0iKiSipW\nzxoXkAxAsvsbQDoarWMWpJK06OhSorJRp4+14znKhnJ2THg07ilvhj29Fveo8OhmKMDFVQQp\nO1qHfJDmZ88kKhN1+lg7fFLZUM4OiRPejOvN4h4UHt0MOZ4M69XiHvRmcbNF9HEPKoIU9a7P\n3rXLpJnGVKLSKu5wrXGxa2dg187ub7BrF3VGNqRSJqSPiIrsULF+clxAMgDJTiNIpelLY5LK\n71sFJA6QZBpBKmNCel/l960CEgdIMo0glaUZxl0qv28VkDhAkmkB6VGi2hkS0gWApDpAkmkB\n6SeijpXpDBPSuSakn1WsnxwXkAxAstMFUqfzqJwJqQYgqQ6QZLpA6nwRnUlfGNVMSBtiXYev\nonxXOCBxgCTTBVKXEdTAhFTFhLQ+xlX4PrVilHEByQAkO20gGRv60/Td5UxI62JchakU5SO1\ngMQBkkwXSF0Nw4S0mp8GXxPjKowgGpX/uIBkAJKdFpBWEd1iGPfS5ysZ0uIYV+EeokH5jwtI\nBiDZaQKp1FiG9OFyhhSkY8/Dn4W/2h1EfflwzpeRxgUkA5DsNIHU1jy4jyYuY0gPBl76E90Y\n/mrXEXU2D0ZUiPRRQEDiAEmmFaQJ3zKkBwIvXUntwl/tLKLWxrRyRGUijQtIBiDZaQTpnzR+\nKUNqanz9/B7/pcvpuvBXyyxBLY2n+DPqhrG++n/DjAtIBiDZaQTpSRq3hCGlDb+SlhmG7w0O\nQ8z7nXBtp9rUwniCr/Hb5+Xp1jDjApIBSHaaQLrePHiKxi7iD5xTuUtoiTE/9VV54Yyz6Kpw\nV/qtN7WgJmMbM6SfOxPV+SZ0XEAyAMlOL0hfE11JlNmAxg07337S4UGiJuGuNJKoVVq98+QH\nMKbXMv/UfOHVoPdEABIHSDKNID1NY78iMuGkn0ODriO6T17Yl+jCcFf6N9G1JcqVIErNoMqp\n1q9ZPBw0LiAZgGSnEaRnaOQcokFEhUvTE1cR9ZcX3kl0QbgrPUnUoTTreeEm8tU3aFxAMgDJ\nTitI/5hFNLcsFSpKj19G1I8vW27uvNUMd6X+JiH+0MWZu7vL7/Iqa/65btbWgHEByQAkO40g\nPUtdZlLTnbUptTA92pSoF1821PRROdyVTD7D6psXNjI+K2IeNLF+PrO28eHlX+SNC0gGINlp\nAWm1H9JdxoWUkkoPXUTUgC972tRxdrgrdSB6k7/r4QbDuOssSn2oa3phltTwQirke/s4IHGA\nJNMI0nPU+Uu626jDHu6/gChlbJ8dxmCK8M6F1kTfteGHSObxPbO37Nm26tdC9kMl33vvAIkD\nJJlekGZQX4P31+hefkL7Cqpz7aX8m5hhrrO9CtGOH8ZfS+/6z6tsQ5rsGxeQDECy0wjS89Rp\nBvUz5Hdz3cMvEDXwPRsXepUdpqM087Affew/s4k9ue/dQoDEAZJMK0gdv6B7jKZsoR9/ndCZ\nPki7Q66yhqgKf9xi5cDt/jNXPlL46if6PEKDfeMCkgFIdppAamcevEAdp1B/4yr57FuG+SfF\nB+n9oCv8vOcjoqfDjLTN/O9D+icfXTUWkGSAJNMK0s2TTEhtKaSgN9stKVJtANEX4YYym0l9\nzHusX1vTAkDiAEmmEaQhdPN7dK/RLhRS0C+9DDHvsYh+jzDa19Te+KaEuVv4wZyflP2whTNA\nkgGSLCkh3TSWnjRuCIWUGTh9M6ISVDLSaN9Q2UEj5LUK8TdBqA+QZIAkS0JIL9JNY+g5o18o\npPTAe5YGRKk0NNJo/L0Pl9pXbBZ13gkESDJAkiUlpA4jaYixu3kQo3JEc5yTr0vnc2dHGm1j\niv+qtaPfEPEHSDJAkiUhpKHU4W160bCetuO9N1mxu7+9iAK+J2iOPH91xOHa2/dG/AT6tqgz\njz9AkgGSLCkhFTqT99iukQ4uWGJ5KGsYN9EM5+T/k+dvDT+Wwe/Z4y6bxn8/jDrz+AMkGSDJ\nkgrSGgnpX7zlm5Cs579rf2NBOkN+Batj6j1lqaZ5/s6Iw33Gd0WNR31DF55Jj0S/JeIOkGSA\nJEtCSP9mN/8yjOsloAuXWZDK8/d0Ob8i8jeiB4tQscjDzST5ocAV1LqBm59I3xbpt2wBSQZI\nsiSDdIN58BK7+bdhv5DUYIUFqZphPEBTHVMPJ3oiI/gZcWcbUoimGMZaunF9Ssp30W+K8H1b\nu3SEV6EASQZIsiSE9LINyXohqfHOUnzQ9yvDGECfOKbuTzSiEt2Rz3hjxz7NO37/WnisKYX5\nurvYMu8Xl4e/BJBkgCRLQkivMJyXfJAuMSrxwVjzgofo3Zr+7zG+kq7dXS8l8kMkx7jHxtJd\nI27YFcOkIa0279b6hL8oHKTt/u/hSzhA4gDJNaT/MJyXDSNLQmpi3E1FiSaZFzxKLzteEbqA\n7jZej+lJhH3HFtJVLQN+JqZd/1iuaC/MReEvCgNpa9nzihRZEuPQkQIkDpBcQNruh/SK73Wg\nZsYnNLCPfAVpILWnUnlT1ygeYZcrdNxjP1BmFbbp65uU6rHclT3QfN499HKVlEH9m+4w5Oc0\ndn+2IO+9fWEgDeAlfiLGxYq4uIBkAJIrSH8V6moevMpb438M40YJ6VJj18hNW+TrQE+S41Oy\nm1Kqx7qO+47t4E9j3OA/523ro+nROpsalaUlN/NifPZQyjXf31vyRsf9UyikXRV40rNvfDvW\nJQu/uIBkAJIrSOI7foAxjLfG/xpGZwmpuf/yIXz6D/vEV9aXosTSvmNGb/OaRf3nmPcc13yV\n31V+mLxq5h9v8fxK7nmID9pkEpWRC1TE91grFNJsKkSDzyc6y9W7zQGJAyQ3kI7ywQgb0t1y\nu73Cfzl/JRf5ttHX6ZJY19GE9IF5zZRlvp+a3Xa5ebKqeWR1hN8m+72YOcHN11lPdrxJpcuR\nr9RUGmu8cfn/zInWXBj08xgLatPAGXuesZ8aSThA4gDJNaQ3eIN9lb+HgT8b295/uXyl1veu\nuQdj/2yECWm+VFDMvjN5jN/Bl/KNMadEoflhr2G/CExPVy8y2fit44fbixBVy+Rzuo2gNuaO\nYelv+S1IKYFPBF5HhZea+3c160d6ni/GxQUkA5AUQJrOG+xrhvF5GSpCN6/1X/6K871190X5\nBWbnuMeMNalU1bzyFnn63TOpWg/zzmVGE+I3x4ZpKu8J8uOzlfZdVi+6fNejVPz5uzfssHbw\nLlnDXwS2zH+VHUMeSaV35NFl1FQK+21SrEsYuLiAZACSAki7eUMdZh5pTsUCvpHhv3zBb/aJ\n2wLfwZrvuOZjmXlvrE+TH8PYbmwwjzyxmL9v3/zvigVBE69/5ht+P2zTDuPOqOx/Z/muWb8b\nb8tfbzI6WndWF001h6nRNO859cf4nX3W0R0Z1JL3QPvSW7EuYsDiApIBSAogGfxBouHmYQuq\nEXCP8RpvwL7nvNvRyljX0f7OhtFV6YH6rUvffxfRWYbxfho/B0hUPujt45WpC6sYaRjLg2aw\nqaf8nfWZha57ZGLDFFMhP9JqYv+EzCBethH2lBfK7/Efn0JnJvLqLCBxgOQeUmF7m7yCRqQ5\nP/8gn4W4w36Q1MjeT4sh35efDKdbzQHqdiK62uCn/Yj4K7/42bsZC33T7ixE1Ufek0aLIw8n\n5TGcL0uaf9LTay/4z87ZvGjtfFOsrEVlvv2Uf/us1g+xLqRjcQHJACQVkNJsSFfSyoDnkV+X\n+1QfmcdWLx9elGJ+jtkH6Ufir9lPq02d+aq7yzbt8bl5uvQCY3UhqrORp1g/dLr95Nwf+Ywn\nO5+aiEuprJyYKhWhWkM/91+4tS5lnkOp5gOxFqHfxRd1cZMc0vaBy5wnAUmWjJAq2JBaUuC/\n52/KbZyfeeZfFGsc8zr6IG3zPYf9vTy5cZux+xzzVInn+K5uFp/1uLkzyXcz1DTqoJ1SvxOL\n+39yQfUicsiUwI+8j+Dd01p/9KaAN6zHuLhJDukFOtf/ubA13wKSLBkhVTQ3wtcN/qz5jwGX\nvyM3WX4AXzzwjQrRxrUh7S5KdEtNopL+e4k5NXy4avMjoksphfhjUK2ivxC0aYH9guyn8jv7\nKwRdfJv5AOxWwzD3JUc7z/790irnP+Z84LQy9J15SQrpl5G8Lz3x45/Mf+fSmw99YYWxcvio\nN88uMSLmJ33iCpDcQzrL3DDfMBjSTwGXjyLfI3re+bs35nXM+4LISnTB9ilEdzsu23W2HLQl\nUe89xs+85zeayrSJ6eGX750Nl/EOXvAPRb9O12zaYxjrSlED5y7obTyzhus/fHOXee6Sf7xU\nl+j+kMVNQkhjGzzTgprffVkNSk2nqzvxWpSeWtb+N2ho6O9fh+vXNdGn8ZcopG/lrsWikX0e\nss/YNbhdt4+3zp060dq9+fPktm1R99sTKBkhnW3f77SiwJt+jPzf1mSlsYgPB4cZIcK4Pkiz\naw4xviAK+JDfZ/9tYt55zDAHXChfPqq1642FYcYIkw/Sd+Pn95sR/O0qfwy1nvN7K+Crjz6X\nX3xEaZR6TpUlde17w+B35rmENO/r8OdHgLR147a8f65+mT64z6Rt4+cbn1T5d8BTll+V4Ld0\nyF3YwlTkux333l82gwpTuTQ6/7LihVLopTGrwgz9cJ+bml/RqvbL8hHpuBHl0u6I461T8UDa\naO9X7x79fv1i1LxLn8v4+aqOG/i831rwYssX/zpce8mZda8uUrjIWYsM5d+Gk4yQ+ANIIw1+\np0Dgp7xXNMnifwSHyA0+9peRAr/7ey1R0I+eDzLvI/ibVkbJb4u4NuZhY/pg3+621OXCi58x\nj/3zrh2/1qZLhr96h+WngnXQi+jWgH8hPy4V/kXiGPupGDUK++WzNqRf39y8Y9favFfIJhRJ\nSaMK/DsExuwX+b0bqVWo/OXmI7y0PtbbNjY/euVXH7em8kR33VT4jJYLxj0vX8nbtK0elZg/\ndd7OPzbLLyAs8oF/TmvmPzhm++QVnXzfh9Z0svFrV/liQ7vY75RCIa2b8fk/yjb59t0bfvh9\n1wp5J7hkBf+dfF069dpsGP9rV8e3n05Fu95AlHH2+dc+WIfKPd22BNWsU5H8pTUtUi4zS+n3\n7yYjpMr2UwpfvhQyCb/s+Yj1/vC1IRdGHDdggz+rWtDFb/A7wXd3pZuNLKpK3WIeNrZPyI7j\nZc2cY9xMdG4dKjHNMHY8XCSzYXHrnumyq/kD8ZUc/0tfT6VKH34Webxo8U9STw93gQVp9aV0\nbumzShYd+gf/nuHym4pZT1IuW7/0ff4kcqXL/Ftb6bOuaP9oS4mLiv144/17jPVO8TOu/V4e\n/rW/I38JTfrK/nVu+8BYOOa95/i+Sz5lc2bPNq1rXWc+Mq19NhUu3HhSYUopdXPNvsb2LwKp\nb1g96WP/49Z5r24y8uoCdQAAEI1JREFUnJC+Mfe5jUULb0nz/ZpChQzzDuaaaS9lFC5ydemu\no+QqlKhUhy9Nv3PtjMcfffBp85HnU/avAdXfaP7r8u42Y8tH12TdNLD/kMUb13WwLmk18pW+\nExK/pQNLRkhVzJV8N/wkKzPMf2im8sP7V2Nfx0BICxcFXfzHh/xv7ydE/VML/fhirB9yihXS\nBvmjNOcNsXbqbpbnff2TMZkKPfvd2lHm5nNrPX7iZNu4iYbxu/HN+7X5i/yK7phyV+QP9I59\nLuzrvDuXGVsmDypWpmOYb581N9zx/zK3zJV5b7+tWKhd/cbmHlDm5Z9+3YfqVytibodXfbf1\nt04dR3d9ePHKz57M8HmqbW66Y/K5GU4YP/zr66uIH7fSxXJbT6legsoWqjnE+u3ROfxR59Jv\n//y78dXlcsSLzqMqdzfu0sT6+P/v0/+RZi5Hy7kjpn7ctVG3JydXoLJ9VjOkXyb0e+2ZIV2p\n3lUp8n2ORVMbD2+dkc73O8Xk+zAzrGdMC4+dV5sP+78fsNXs+G7WhOeKVp8YuLj8ZMOOT9+a\nOGSy9cOOTQeMXRF55WIvWSFF+peC76DlV7BG/j670HFj2eC/40HLxj5ozN/Z8BRdv4z3SM82\nV6tZ3r/EW698Km+KgUQPmZvtWZek9jGny+B3Qr1ZyfnLaYHtTqezunYJfST0YGpfvmtoP4tK\n5O32rpKfX3zn0rRuHc1/m2t3b2XuoRW//oU7e9n/uGfU4bcHbq0p7z+GbHcON63KvWeXp0ue\n2WO8+9zm/G4GuQWtOZfSbrmlkLl5l04dvG3nktd/3uK/m53y5ltL5ZE9S/9d6jYTgbw/pkL9\nmj7cN6s4BcdfCXr5Xf+8PMNxXpWi9O9feMdw+64dH738/vYV3Yhu/+WHW4dntfqX+QBg29D3\n5oT9zt2Qx0L+Z+1mPtas3T/lDt850e6X9kx/+MO8G+fL/4Z7FKoaUu6E3r3G5IQejwcSv710\ncoRprvHdstsjTBBu3Jg2+Ocowu+mRypGSD9X/Y8xozTRC7tL03Nhp/jlHOdm1GLfbwP5IUmp\ntgNmTFi04NegBzyLNtwiJysT9BHf6fP5N9koreVXexpTrT3yvC/7U8bl7b40zvSPXm6lsY33\nonqnnkuFSv5jo3Xl+W2uvbxWqJYdO96L9Fsf/uzXkTYMWmzeu9Z4edK2aI+D5vZ7fsMDvfpc\n/VBhe5muenDoT1MuNvfLypXpWaVyyl0/PWo/H5hRtXbtGteMeCFr0hJjS/DrBLMjfU1a/gU9\n/f1dh2bVylCh+4bMWxbhCsaMu9/kmzyzymUjn+9Xq37ropQxcv2wayvePWvaff6tUDWkyd2W\nLus5JvR4PJCqUeSvRv3auombdYk6mmPc2L7tx/y/F9evVsTzLULfVhm6y/iwbYTHdXOaUOVB\n9dPMf6qLtkj7aN/x+U5YmfdZZPZ8ueODsS90LmzuzpxBhcvTBQGf8V1VTN7HPMf7rbPKWXfo\nM9IsO1dRg9bm2DdXNx8Adfdd4fe1Y2dEeH4vvhJ/Qfa1Wg0yL7rlq2/kw6M9q5du4c1yhfw/\nP3PgFRfeGv4jLi4L8zrS7mfk/eATX/+2+XdjR8BbUTbOXnCtJN2zXt5Xyae2zjtG90742hj3\n2IvvLn7tgeg3ZjyQcnrOFGJh16PBx+OCxP9Afx5hmt03yVWYFXUw57ixbfCVIjxKj5TCr+Pa\n8+0eY8vKFe+05X2yfceNSyn9Jv8uj7wfW/hA3m/pdl498Meh5n7oCyPXvdN8ihzg313NO6Mn\ne4+zhnubyly/oV3bsyil7z38SCDlwz3bP34y9/gf65bH8lUV8fU3eGfDnncHVOf9yDLphcqW\nrv3f61vc3efFf329a8tzF5WgwlT46ip3fWr+D5gxuHGrXsMGvfOT8VatVPrnxxeUL5Jm74jy\nA7a+UWcdD6QtWYYQB7PWBh+PC9J55i5xxIfaK3m5S/4SdTDnuLFt8FdXfDCuzczD77Xjp3f3\nfDn9rUkPDh15K2VeNqznLeUtRMVTmspHz7vv4VMdy1Kx9gMmXtnF3Etq7383xq81zIdk5sUN\nvjKMpV9cUVG+4QlvWpVFeGfDzh1vp5ehgM5gIoWK3BLumZ3lH8mD/53boBKltuiYkVp78Lqo\ns44H0sr2p8y/nRYHHX+je/fu/U5GK0eckod1iBpHnGiHib/Qo1HHChg3N6bJDv4Z16jm4sY2\nbrwFL26W7/9ssf4vbju6wz73xJxUa+/C9+Bnl+MqswrLO6I11qmjR+XB/9PiqsqjxT0Zedjj\nUzfP/+KToZ3uHfvMi/0vNLezZs/uiDixr31zfz55cudvsSzuiTggLezMf3vMCDo+qFGjRq2j\nXtnX+7c/9nXkSzsUKXVfzEP9Hdp949lplZtVfvmdnYHnj7rvjPIVppxzRvGS5c+o9J+tAZft\n+bPeje+8+/+4kH+/sjdsVjziqbxj0SEtb59r/u20MPg4F/Wuz7drpzr8GDOHXTvZafKm1U1Z\n5tRHslYFHwek2AMkTnNIOd3nCbG0y9Hg44AUe4DEaQ5JTOy1YeOdo4WYO8N/HJDiCpA43SHl\nju/da7T5qGrwAP9xQIorQOJ0h5RPUWcESDJA4gAJkFwGSBwgAZLLAIkDJEByGSBxgARILgMk\nDpAAyWWAxAESILkMkDhAAiSXARIHSIDkMkDiAAmQXAZIHCABkssAiQMkQHIZIHGABEguAyQO\nkADJZYDEARIguQyQOEACJJcBEgdIgOQyQOIACZBcBkgcIAGSywCJAyRAchkgcYAESC4DJA6Q\nAMllgMQBEiC5DJA4QAIklwESB0iA5DJA4gAJkFwGSBwgAZLLAIkDpIjtj9bupeujTpNI2Uc9\nGdZYus6TcbOPeTKssXS1J+N6tLh/LV3lybgHjnsy7L6lP0SdJlsRpKj93GiItzNQ29ZGTxb0\nIsTTnkaPFPQixFN2o9PqdxlPNuoTx9SA5AyQvAyQEg+QvAyQvAyQEg+QvAyQEi97zjpvZ6C2\nw3PWFPQixNOxOT8V9CLE08k5Kwt6EeLp1Jzv45jaY0gI6REgIaQgQEJIQd5Cyp3Qu9eYHE9n\n4bZPssw6+Bc1+DC5eveoiLyoybfIcnFPk1v4+Ft3dR38W8K3rreQJndbuqznGE9n4bY3n16x\nYsVK/6IGHyZV67L4pfRIi5p0i2wt7mlyCz/X69sNz/Q8mOit6ymknJ4zhVjY9aiX83Db05Pk\ngW9Rgw8LeOkC+mHozbxlRlrUZFtke3FPk1vYyPpJiKOd5id663oKaUuWIcTBrLVezsNtfecf\n5f/bvkUNPizoxXO2bupI3jIjLWqyLbK9uKfJLbxpgGkkt/vURG9dTyGtbH/K/NtpsZfzcFnu\nTQ+1z7pnXd6iBh8W8OIF9QtvmZEWNfkWWS7u6XQLf5e1MdFb11NICzvz3x4zvJyHy/Z2HL3P\neKnbft+iBh8W5LKFJrfMSIuafIssF/f0uYVzZ938TsK3rqeQlrfPNf92WujlPFR0rPM836IG\nHxbwkgUlt8xIi5p8iywXV3Y63MK7Hus6I/Fb11NIm7L+EuJI1iov56Gkez7xLWrwYUEvWWBy\ny4y0qMm3yH5Ip8Et/HPXl/aLxG9db5+16z5PiKVdkuWJmXAtvueAEIc7fe9b1ODDgl6+wOSW\nGWlRk2+R5eKeJrdwzu2jrMMEb11vX0ea2GvDxjtHezoLl2V3f/qHNYMHnMpb1ODDpMr6Jz7S\noibdIsvFPU1u4e/bL1lt9meit67H72wY37vX6FOezsJte17sftuwbP+iBh8mVRakSIuadIts\nLe7pcQtPzZJNT/TWxXvtEFIQICGkIEBCSEGAhJCCAAkhBQESQgoCJIQUBEgIKQiQVNaHHrOO\nNKsbeaIceiaGoV6h/THPtnHr8MO3aBblil3S5kQ9L9w0KCRAUlkfKmJ98uv/F1LLG8MPHw3S\n3EIfRz0v3DQoNEBSWR8qdqU88v8LKdLwUSDlNBsV9bxw06AwAZLK+tAQeo+PhEA66f/+mSBI\nh8MPFTukoAHi2bXL69TJ6AOj/AIklfWh47Uq7BM2pBXXVzzr+hXmkTY3Pl+8UKNpJwacm3n9\n77ylv39pZpN3zAtadlp9cQ0hNt9SPfPy6XmjfNAis9EbElLABV2K8M9aHc5oI8QXV55ZsuHI\nvAGa8WMk33mO4SWkoMEXtSrV7MM+DZ0XtOkw+UyqeOcB53khSxY0DAoKkFTWh8Rc6i8sSHPT\nqj7+eFV+qN6mZJkXhldKa3zl23dRe3NLr5tx96ALaaC5ubaq2nOUWFWq8uPPNkh5xx5kGNV6\n4u5iNUxIgRd8QuPNvx/RRDGOmrw4pAl94BuAIeWd5xieIQUN/lXRBs/dUbhiQ+cFbWqk9x/V\nmXo7zwtesqBhUHCApDITkrgldbmElFv/bEMI46wGuaJNyndCvEmNTglR60xzS6eFQhy5tOhW\n0ZL4bqVVNfNO7GTLDOvjpH+WuvigEAvJhBR4wZESN5l/u2QeEdeWMu+bjmfeKewBGFLeeY7h\nGVLgGKLxhUeEeIcaOi9oQ/w4qHFV53nBSxY0DAoOkFTGkHaUvOQUQ9pEL/BZz9Jm0aameWQN\nvWT+7VvC3NJb8QUzaKxomWE+dNpnTTiJZssxPqZP+KAV7Q+6QHQrfkQcyTDvOA4eMk/9Uby7\nsAaQkPLOcwxvQgoaYxO9Zv49kdnQeUGbEjzIHeWc5wUtWfCioOAASWUMSbxKbzGkWTSNz5pC\nc0UbfkiygfjjlfcypAf5gj9okGhZ2zzyDdlNlGMMpd/44GHaH3SBmEZTTWb89RvLnuzSKJ0Y\nEg9gPUbynecY3oQUNMYskl+D06Ch84I2deSyl3OeF7RkwYuCggMklUlIOQ3K7JaQPuWzptHM\n8JAMek60bGweWUmDF8j+kGO8bN6FmT1D+4MuEMcye4iu1XOFeD6l0SOjV1ZjSDyAhJR3nmN4\nE1LQGJ/Rl3xwcUPnBXLxGJLjvKAlC14UFBwgqUxCEktSbpO7dvLHCl8w72CCIV3NF8ymSdbm\nesB6vnrthENyjCk0hQ860/6gC4ToUeZAxlNCZBe5m09VdkLyn+cY3oQUNMY6Gmb+PVmmofOC\nPEiO84KWLGRRUFCApDILkrgjpXRdcapupT+F2Fup7qkQSCmLhTjaotSftoNrKm4S4vA5VXLl\nlfeVbnxYiJ8K0/6gC4T4nPrSL0KsJv6BzkUpTkj+8xzD85MNgWPk1K57VIj/8ZMN/gvyIDnO\nC16y4EVBQQGSymxIRlmqa94nFKn+5ODqaXNFCKQSGfc9XY+G+xz8ULLigIHnp3xgD/IaXfjU\nA5ktTEhBF4jjpVOamwcnqpd+bMzd5SrWnOuH5D/PMTxDChpjbuHGQ/tWrnmJ8wI/JP95wUsW\nvCgoKEBSmQ1JjGRI4vs2FSq05Z9NDYY05sn6JZt/JHybq/jl5sqlLv8yb5QPmmdeNHw6vyAb\ndIG4neQLOevalKpy67bxZ17neIyUd55jePmCbNAYCy4r1Xpt/audF/gh+c8LWbLgRUGBAZJW\n5b4z3/ybXWJAQS/I3y5A0qsrM+dkb7616NaCXo6/XYCkV9uaE1ElvKyqPEDSrV/n/Zo0X2/6\nNwqQEFIQICGkIEBCSEGAhJCCAAkhBQESQgoCJIQUBEgIKQiQEFIQICGkoP8D841PgxJeAGAA\nAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "n <- 20000\n", "p <- 0.3\n", "\n", "t <- 4\n", "m <- 2\n", "\n", "# Générer deux ensemble de n observations de S pour estimer chacunes de ces \n", "# deux probabilités avec deux ensembles distinct\n", "df <- data.frame(S1 = sapply(p*rep(1,n), FUN = geom),S2 = sapply(p*rep(1,n), FUN = geom))\n", "\n", "# Proposer une estimation de P(S > t + m | S > t)\n", "prob3_1 <- sum(df$S1 > (t+m)*rep(1,n))/n\n", "prob3_2 <- sum(df$S2 > t*rep(1,n))/n\n", "prob3 <- prob3_1/prob3_2\n", "sprintf(\"On estime donc la probabilité P(S > t + m | S > t) par : %f\",prob3)\n", "\n", "# Proposer une estimation de P(S > m)\n", "prob3_ <- sum(df$S2 > m*rep(1,n))/n\n", "sprintf(\"On estime donc la probabilité P(S > m) par : %f\",prob3_)\n", "\n", "# Faire un plot montrant la convergence de cette probabilité\n", "p_sup_t <- cumsum((df$S1 > t*rep(1,n)))\n", "ind <- (p_sup_t > 0)\n", "\n", "df_ <- data.frame(iter = (1:n)[ind], \n", " diff = abs(cumsum((df$S1 > (t+m)*rep(1,n)))[ind]/cumsum((df$S1 > t*rep(1,n)))[ind]-cumsum((df$S2 > m*rep(1,n)))[ind]/(1:n)[ind]))\n", "\n", "fig <-ggplot(df_,aes(x=iter,y=diff)) + geom_line() + \n", " labs(title=\"Convergence de la différence entre les deux estimations\", \n", " x = 'Nombre de variable générée',y=\"Différence absolue en les deux estimations\") +\n", " theme(plot.title = element_text(hjust = 0.5, size = 16))\n", "fig" ] }, { "cell_type": "markdown", "execution_count": null, "id": "f322e097-de2a-4313-9cf3-dc7bfcb1f6d0", "metadata": { "tags": [] }, "source": [ "## Exercice 5: \n", "\n", "1\\) Laquelle des fonctions suivantes est la densité d'une variable continue ? Reconnaissez-vous cette loi ?\n", "\n", "**Solution**: \n", "Seules les deux dernières sont des fonctions de densité d'une variable continue car les deux autres ne satisfont pas $\\int_{\\mathbb{R}} f(x) dx = 1$. La figure 1 représente la fonction de densité d'une loi uniforme $\\mathcal{U}(0,1)$.\n" ] }, { "cell_type": "code", "execution_count": null, "id": "332e9bfe-57e0-4eb6-84f5-3ca06937613a", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2deYAUxfm/3wVEPPGIxhjPxHgk\n3qtBv97xSALORnFhDVnRDV4hmsgPjTGi4IUGTcT7AhVFRBLEk6BIEAWUW0BWQFGMgMBw7rL3\n7NZv7unqqu6uqqmedZfP88dMd01VvzXz4WF7pme6iQEA8oZaewIAtAcgEgAWgEgAWAAiAWAB\niASABSASABaASABYACIBYAGIBIAFIBIAFoBIAFgAIgFgAYgEgAUgEgAWgEgAWAAiAWABiASA\nBSASABZoZyLVU5bz2A30lul2zv2zzVkBZimasefsvWvxoG2Wp2aD9ifSccenuCYPkRbRFVan\nBexEcx3RQf+3C/1ok+3J5U/7EymWXVn82lqjjbS8fyREso6FaP5LXf7D2Prz6Hf2pmWL9ixS\nMDWyzv12i+99QCTbWIimnIYn7tbvuGOjpUnZoz2L9NfU/sOjZ3Q944mv6LrEnsH7iYbpdC1j\nd9PcGcd32BJfKz10t+JHGnLbGFRaeipEso6FaE6mz5L3J9Cigk5dhfYv0hW082kH0K/EtJ7d\n5YDza9g/O3Y89pSd6Nwa52Zeg0jWsRDNPTfWJe8Pom8KPPlg2r1Ir1O3jYwNJTGtrkPiXRd3\nPHgBY+vOoVucm4FI9rEUTZx/0TGFnLga7U+kNKXptE5O7QacIKZ1UmL5Yno3cbemyx7Njs1A\nJPtYioaxcbt0fKfAc1eg/YmU/oz1xlRajR2PSD5wj5jWbYnlH3ZNpZTZ/U4BkexjKZovS6jL\nCwWeugrtTyR+/2EZXZBcflFM6+n4YnXuKOFMx2Ygkn2sRNP8QBc6o7KwE1ejvYu0KJ3WGEda\nH6bSGh1f3EL7DUmzwrEZiGQfG9FsPJ0OHlfgeSvS3kWqKToquXyfI62xubTYPj+QbQYi2cdC\nNLWnUnlVYWarTXsXiR1OSxLLP0+lNSGx/HtHWhfQB4m7TYd2c24GItnHQjQP0GUFnbIO7V6k\nV+j0LYwNS37G+gBF4o9O6OhIawbtN5+xqgjd7twMRLKPhWgOK1rTChNXo92LxH5Lu591SMf+\ndCNjK7vS4eWn0OGOtOKdio48dw86s8G5GYhkn/yj2UxFB6TBAdmQkX0P5cHinU6a/BzdEV9c\n0GMfom6fOdNib0cO3P2khzmPIFII5B/NvNzneCsLO3cF2plIImtXJe/uohdT65u/bsXJACft\nKpp2L9KFtDhxd0yX9a09E+CiXUXT7kUaTd0W1i3tS/1aeyLATbuKpt2LxG7qmNipvmRja88D\nCLSnaNq/SGzZk7c9O7e1JwFktKNotgORAAgfiASABSASABaASABYACIBYAGIBIAFIBIAFoBI\nAFgAIgFgAcsibXCysaVhgyabGnVHGBTZrD+tlnrtIvojWur49RCjcddSYIv+iJZa3SFbDYrU\n6A6p0p+Wq8hW8eW1LFLUyQbWGNVkY5PuiA2sQXfIJv1psXrdIZv1p8XqXOvhReOupcAW/ZeA\n1eoO2ao/Lf0iVfrTYjWuogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQ\nSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIGIjU8cXXZoC9Tyy2j+1WMdFztkysHkbTIT6RR\ndYyPxDcaiKRFOCLdWfHx0iF9q5PLY/vMnN13pEdaEEmLvESqjGTOLp+JxDcaiKRFKCJFIwsZ\nqyudmliO9Z3E2LSyutyDTiCSFnmItODenhmRMpH4RwORtAhFpBUD4uG0lCcvHrAyEmWsOrIE\nIgkUVKTKCU9nRMpE4h8NRNIivA8bZkWWJ+7mlySuTlg6PbH86vPPP//uNg4W26ZJTbP2iLFD\n79TkLv0R91XqzqtW+7nXsib+mekE8nlGpEwkzmhGxaP5yLeWAnXaI2pZo8cj471e6Ls9o/nn\nZo9peRbxpF57RB1r4NYl0RiJ1PJOz6eSC9N6JW4vm5i47VlcXHy9ydbyYysVhPLCP7Pm4C45\nsiJlInFG0y0ezX12J5cfuxkk8G5rT9pBk9hkItLam8smppbmlrTEb0unJZZnTJ48eX4VB4tV\naVKtPeJrOmGUJi+O1R3xIPXWnde2Ju0RrJFbr9bJJCtSJhJnNFPi0XzmW0uBGv0RrMHjkS4H\nebzQo1/2eKAn/Vu3iCe1+iNYPbe+zYpIy8qGZfYRV0TiO/K1kUXZx7g9yYK8R1pOv9Ydov8e\n6RPqpTukwJ/aZUXKROIfTSu/R9rxaI8HPN8j3Uwvyx9ou++RYlc8k1sun8LYzN6t+akdREqS\nFSkTiX80EEmLUESaUzJjcZyN7L34/t2YiqXLrxqRe5ArB5G0sCCSMxLfaCCSFqGINCGS5C02\naABjLS/0qxjheFfMlYNIWlgQyRmJbzQQSYvt4bt2EMkkGoikBUSSApEgkh4QSQpEgkh6QCQp\nEAki6QGRpEAkiKQHRJICkSCSHhBJCkSCSHpAJCkQCSLpAZGkQCSIpAdEkgKRIJIeEEkKRIJI\nekAkKRAJIukBkaRAJIikB0SSApEgkh4QSQpEgkh6QCQpEAki6QGRpEAkiKQHRJICkSCSHhBJ\nCkSCSHpAJCkQCSLpAZGkQCSIpAdEkgKRIJIeEEkKRIJIekAkKRAJIukBkaRAJIikB0SSApEg\nkh4QSQpEgkh6QCQpEAki6QGRpEAkiKRH4UXa5GQza9qkyRbtESuou+6QrdpFFlMv7SKN2iNY\nPbcuSctaNO5aClQ1aI/wLLLjMR4PVHuN+Cu94lWkTnNam7Zpj6hmtdz6VvHltSxSIwdradSk\nSXvEt9Qj/CJfUG/tIs3aIxg/pCHEaNy1CvKEcnQ5TrfI7fS6bhFPYgbPJMat14svL3btVMCu\nHXbt+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkF\niASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkF\niASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkF\niASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkF\niASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICEEkFiASR+KICZiKN\nqksvjI/EucgjLYikRR4itYzuVzEyllycEUky3D8aiKRFWCJVRqrSS48Pnjdv3nyPtCCSFnmI\nNLbPzNl9RyYXN8cDmTe7z1T/aCCSFuGItODenlmRBr/MP8aVg0hamIsU6zuJsWllddmGV28P\niAYiaRGOSJUTns6KdO3UuirnY1w5iKSFuUgrI1HGqiNLMuvr+6wNiAYiaRHWrt3nGZFaLh5Y\nEulfmVwe8oc//OFR/oqB+pe+bCzEpS/1i3zHL305v6Q5fls6PbM+/Ek+muvj0bzsW6sgTygH\nLn3pEmnDJSM2R4f1SQras7i4+HqTreXHBuoRfpGVVBZ+ETfNyj2n9UrcXjYxvbq61wY+mm7x\naO6zP0FzuhyvO+IOejuMiRjSJDblJ1KS+l5TEnfbtm7dWrPByUbWuEGTTU26Iz6nX+sO2aw9\nrYXUS3fIlgbdEZtZvWtdlbklLfHb0mnp1ceGuaKJJ7O1zreWAlu1R2xhdR6P7Hi0xwNVXkVu\nprHyB7ayWr1ZbdhQ7TUtT6oY/y/b1lXNeZFY//HZRW5PEu+RtDB/j7QiEu9bG1mUWmu4dE5g\nNHiPpEXo75Gm94+7WVOaC44rB5G0yONTu/L4H56ZvdOf2s0oiwVGA5G0CFek9yayqvLBCz4d\nNCC3N8+Vg0ha5HEcaUzF0uVXjUhGwtijtyea/KOBSFqEK9KgAYytH1p++UOO/TyuHETSIp9v\nNrzQr2JEcyoSdvWYZJtvNBBJC3zXTkr7E0k7GoikBUSSApEgkh4QSQpEgkh6QCQpEAki6QGR\npEAkiKQHRJICkSCSHhBJCkSCSHpAJCkQCSLpAZGkQCSIpAdEkgKRIJIeEEkKRIJIekAkKRAJ\nIukBkaRAJIikB0SSApEgkh4QSQpEgkh6QCQpEAki6QGRpEAkiKQHRJICkSCSHhBJCkSCSHpA\nJCkQCSLpAZGkQCSIpAdEkgKRIJIeEEkKRIJIekAkKRAJIukBkaRAJIikB0SSApEgkh4QSQpE\ngkh6QCQpEAki6QGRpEAkiKRH4UWq5mCxak22aY/4H3XXHVKjXaSSemsXadIewRq59W0hRuOu\npUBt3k8oR5djvYp4jbiV/u0xgjVoTqu6Tvu517mKSKKxLNI2DhbbpklNs+6Ib6i77pBa7Wl9\nRr3DL1LLmrj1mhCjcddSoE57RC1r9Hiky7G6RW6l8R4jPIt4Uq89Ii4Sty6JBrt2KmDXDrt2\nfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJI\nfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJI\nfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJI\nfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJI\nfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBiKQCRIJIfFEBM5FG1aUXWkb3qxgZ80gL\nImmRh0jOGMZH4lwUEA1E0sJcpOs/9sutMlKVXhrbZ+bsviMhkkhoIsmiccbw+OB58+bND4gG\nImlhLlInOuz2ZR4aLbi3Z0akWN9JjE0rq8s+xpWDSFooiiSJhoth8MsK0UAkLcxFij55dgc6\n6cFvZY9VTng6I9LKSJSx6sgSiCQQmkiSaLgYrp1aVxUYDUTSIq/3SKuHn0Idz39uq+ShzzMi\nzS9pjt+WTodIAmG+R3JH44yh5eKBJZH+lQHRQCQt8v2wYe4xRF16TfMWaVqvxO1lExO3PYuL\ni6/321o4bKAe4RdZSWXhF3HT7PcgF40zhg2XjNgcHdZni7OtWzya+8Kcqi5djtcdcQe9HcZE\nDGkSm7xFWvXYuZ3o0Buv6UqPuR/KijS3pCV+W5rM86by8vK/N3GwliZdtEespR66Q2LaRb6g\nsvCLxFgzt96oHI0zhiT1vaY42y6PR/Ocb62CPKEcXY7zGuI1YjC9oVvEE88i3iNcRRqURfp8\n2ClFdPjf5sUXN3c70lOkFZH4/kdtZFH2Ee4PIHbttFDctZNEI8TA+o/3jwa7dlqY79oRHT14\ncXp54EGeIsXKpzA2szc+tRMJTSRJNM4YpvePv3WqKZ3jHw1E0sJcpHuW5pabY+5HUyK9F9//\nHlOxdPlVI3KPcOUgkhaKIsmiycQQj6SqfPCCTwcNaPaPBiJpEdY3G1IiDRrAWMsL/SpGON4V\nc+Ugkhb5fLMhHUMikvVDyy9/qCogGoikBb5rJ6X9iaQdDUTSAiJJgUgQSQ+IJAUiQSQ9IJIU\niASR9IBIUiASRNIDIkmBSBBJD4gkBSJBJD0gkhSIBJH0gEhSIBJE0gMiSYFIEEkPiCQFIkEk\nPSCSFIgEkfSASFIgEkTSAyJJgUgQSQ+IJAUiQSQ9IJIUiASR9IBIUiASRNIDIkmBSBBJD4gk\nBSJBJD0gkhSIBJH0gEhSIBJE0gMiSYFIEEkPiCQFIkEkPSCSFIgEkfSASFIgEkTSAyJJgUgQ\nSQ+IJAUiQSQ9IJIUiASR9IBIUiASRNIDIkmBSBBJj8KLVM/Bmus1adAesYa6h1/kc+odfpEG\nFuMbQoxGqBVMY/5PKEuX47yKeI24jV7zGGHwTPRHsCZuvU58eS2LtJmDNW3WZKv2iC+pe/hF\nPqVeukOqGrVHsAZuXXY9eVvRuGspUK09oorVezyy4zEeD2zzKnILjZM/UM3qNKe1eZvXtLxH\nuIpUiS8vdu1UwK4ddu34ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQ\nSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQ\nSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQ\nSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQ\nSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIQSQWIBJH4ogIG\nIrWM7lcxMpZaHh+Jc5FHWhBJizxEckbS8MTVZYO+DIgGImkRjkhj+8yc3XdkavnxwfPmzZsP\nkUQKKpIzkjsrPl46pG+1fzQQSYtQRIr1ncTYtLLUtZYGv8w/yJWDSFqYi+SMJBpZyFhd6VT/\naCCSFqGItDISZaw6siS5cu3UOu6iS1w5iKSFuUjOSFYMiPvUUj7BPxqIpEUoIs0vaY7flk5P\nLLdcPLAk0r8y2b5w1qxZS7dwsKYtmlTFdEd8Rd11h1RrT2sJ9Qq/SDVr4NYll4VTiCTJrMhy\nZzTxZGZ95do2X0uBbY35PqEcXY7xeKDGa8QtNE7+wDZWrzmtLTXaI7axOm692oZI03olbi+b\nmLjdcMmIzdFhfZKC9iwuLr5ee2t5s4F6hF9kJZWFX8RNs3JPZyRxWt7p+RQXTbd4NPfZn6A5\nXY7XHXEHvR3GRAxpEpv0RZpb0hK/LZ2WbajvNSVx9+LDDz/8ei0Ha67VpE57xGrqHn6RZdRb\nd0h9THsEcw0xjGTtzWUZpdLRPBaPZiq36Tp3rXCeUJPHI12O9RriNWIQTdAt4kmD/gjWyDfY\nEGlFJL7zXhtZlGvpPz67yO1J4j2SFubvkbhIlpUNy+3Ce0WD90hahPOpXXn8f7mZvZMfEU3v\nv5WxmtI5EEmgoJ/aOSKJXfEMC44GImkRznGkMRVLl181grH3JrKq8sELPh00ILc3z5WDSFrk\ncRzJEcmckhmL42z0jwYiaRHSNxte6FcxIh7QoAGMrR9afvlDjo+XuHIQSYt8vtmQi2RCJMlb\n/tFAJC3wXTsp7U8k7WggkhYQSQpEgkh6QCQpEAki6QGRpEAkiKQHRJICkSCSHhBJCkSCSHpA\nJCkQCSLpAZGkQCSIpAdEkgKRIJIeEEkKRIJIekAkKRAJIukBkaRAJIikB0SSApEgkh4QSQpE\ngkh6QCQpEAki6QGRpEAkiKQHRJICkSCSHhBJCkSCSHpAJCkQCSLpAZGkQCSIpAdEkgKRIJIe\nEEkKRIJIekAkKRAJIukBkaRAJIikB0SSApEgkh4QSQpEgkh6QCQpEAki6QGRpEAkiKQHRJIC\nkSCSHhBJCkSCSHoUXqQWDve6AtojotQj/CJfUVn4RdwvV6ytR+NdpMvxukWG0Fu6RbzJe0Sj\n+PLiL5IK+IuEv0h8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJE\ngkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJE\ngkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJE\ngkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJE\ngkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJEgkh8UQGIpAJE\ngkh8UQEDkVpG96sYGROXhbQgkhZ5iCSLxDcaiKRFOCKN7TNzdt+R4jJEclJQkWSR+EYDkbQI\nRaRY30mMTSurcy9DJI5CiiSLxD8aiKRFKCKtjEQZq44scS9DJI5CiiSLxD8aiKRFKCLNL2mO\n35ZOdy+/+vzzz7+7jWPT0Ds1uete3RG3UPdtmtTGdEd8RsdoPxP95/5KE1e0Jq9InG2j4tF8\nxL8EX2pP7279J3TfPR6PdDrW44Wub/J44Fa6zGNankU8uVt/xKSGoGj0RZrWK3F72UT3cs/i\n4uLr+a6fUyH4rfZT0CbasRBP5Jd80Wbl6ckicbZ1i0dzHz/knUI8IW/O1E1geOvO91p+Nk3i\nBPVFmlvSEr8tneZeXjhr1qylWzhqJr2myevvaI+YvG6LJtVNuiOqFv5Hd15vaD/3N+Y38EXz\nisTZFk9m1lf8tjdoP6E39V+CyZ5DXP9QstQ0eDyw/g2vaU2eqDuvt7RHvPlZHf8vyIZIKyLx\nnffayCL3chJuT7Ig75E2MP03I/rTYvpvEAr4HkkWiX80rfweyRPP90ietN33SLHyKYzN7F3n\nXoZIHAX91E4SiX80EEmLcI4jjalYuvyqEYy9NzG3DJHcFPQ4kiwS32ggkhYhfbPhhX4VI+Lv\nhAcNyC1DJDeF/WaDJBLfaCCSFtvDd+0gkkk0EEkLiCQFIkEkPSCSFIgEkfSASFIgEkTSAyJJ\ngUgQSQ+IJAUiQSQ9IJIUiASR9IBIUiASRNKj8CJxX+3bNPMTjS+GJtnq9aVFTzbOXKw7pKpe\nd0R05qfhF1k/s5LfQojRuGspUF0X3Idn7Uyv76ZaLLJm5nLdIdtqdUesmvkFvwXx5bUsEkdD\n8dUhbj3NluI/h19kTfEt4RdZUXxn+EWyte4Iv8iS4mHhF5lT/Gj4RT4oHhHUBSKpAJFMgEiW\ngEhaQCQTIJIlIJJZLYikQSuL1Dx5bohbT9M4eUH4ReomLwrulC/bJi8J7tSWam2dvDT8Ihsn\nfx5+kejkL4O6hCkSANsNEAkAC0AkACwQtkij6oL75IP7DNdhEfbzYKzhiavLBgXuilsE0aii\nEk3IIlVGLB+fd+M+w3VIhP48GLuz4uOlQ/pKTvQUEohGGZVoQhVpwb09Q36WwhmuQyH858FY\nNLKQsbrSqSGXyYBo1FGKJlSRKic8HfKzFM5wHQrhPw/GVgyI/5NrKZ8QcpkMiEYdpWhC3rX7\nPORn6TzDdZiE/TzSzIosL0SZJIhGi6Bo2rhIzjNch0lB0mp5p+dT4VfJgGg0CI4mJJFmRCKR\nVSz8Z+k8w3WYFCKttTeXhf6vjiEaExSiCUmkWE1NTeJ1DPtZCme4DokCpLWsbJjk92L2QTTa\nqETTxnfthDNch0T4acWueCbkCi4QjSpK0bRxkYQzXIdE+GnNKZmxOM7GkMvkQDSqKEXT1kVy\nn+E6JMJPa0IkyVshl8mBaFRRigbftQPAAhAJAAtAJAAsAJEAsABEAsACEAkAC0AkACwAkQCw\nAEQCwAIQCQALQCQALACRALDAdifSnI4D47f3dPiwtScC3LTpaLY7kdhfOs5jy7vc0NrTACJt\nOZrtT6S6w09sOvuwmtaeBhBpy9FsfyKxD4rOapt7D+2fNhzNdigS609/bO0pADltN5rtUaQe\ndFpLa88BSGm70WyHIj1Pf6LHW3sSQEYbjmb7E2n1HuXsot1XtfY0gEhbjmb7E6nH96Lsm11L\nWnsaQKQtR7PdiTSKXojfDqdxrT0R4KZNR7PdiQRAGEAkACwAkQCwAEQCwAIQCQALQCQALACR\nALAARALAAhAJAAtAJAAsAJEAsABEAsACEAkAC0AkACwAkQCwAEQCwAIQCQALQCQALACRALAA\nRALAAhAJAAtAJAAsAJFAGyO27bt4VuN2JlI9ZTmP3UBvmWyj6f5T9/j+mS/Zntr2jo1okkRo\npcVp2aL9iXTc8SmuMUyr+QzqeOJJO9DvrU9u+8ZCNEmeIIgUPvG0YtmVxa+tNdjEU3TMOsY+\n25em2JsWsBJNgqU7Q6QCwKUVTI2k8wX0SeJuKN1uaU4giYVo4jQWf+9AiBQ+XFp/Te0/PHpG\n1zOe+IquY+w6ej/RMJ2uZexumjvj+A5b4mulh+5W/EhDdtSBRcktPI99O7tYiCY58NXjIVL4\nSNK6gnY+7QD6lZjWs7sccH4N+2fHjseeshOdm71yaX198u5yerDAc2/nWIiGsWkdfs8gUgEQ\n03qdum1M7KiJaXUdEu+6uOPBCxhbdw7d4tzKB//uQ8dWFXry7Rsb0Ww5+NAqiFQIcp+xlqbT\nOpkWJR44QUzrpMTyxfRu4m5Nlz2ac1v5Ij7+R98UfvbtGhvR9ElcqhkiFYDcZ6w3ptJq7HhE\n8oF7xLRuSyz/sGsqpZPps9xWqp67v2fRXrMLPfn2jYVoXkr+cYJIBUDYf1hGFySXXxTTejq+\nWJ07SjiT39JTdELBZr1dkH80X3c9oZFBpIIgpLUondYYR1ofptIaHV/cQvsNSbMiNagllvp/\nMNaFqgs793ZO/tGMoKPOi7MrnXbe+IJPP4j2LlJN0VHJ5fscaY3NpcX2+YFrCzPpV6mF79GW\nAkx4+yH/aEbk/kYNL9Ck1WnvIrHDaUli+eeptCYkln/vSOsC+iBxt+nQbulBGzvsnfy4dTkd\nWsiJt3/yjyYNdu0KgJjWK3R6/C/LsORnrA9QJP7ohI6OtGbQfvMZq4rkvscQocvjJq0+jYa0\nwvzbMRaiSQGRCoDkqN9vafezDunYn25kbGVXOrz8FDrckVa8U9GR5+5BZ2aPn3+9H+11+s93\nol80FXz27RoL0aSASAVA9j2UB4t3Omnyc3RHfHFBj32Iun3mTIu9HTlw95MedoS17s+Hddn/\nF899F3/00paxEU0SiNQqrF2VvLuLXkytb/66FScDnLSraNq9SBfS4sTdMV3Wt/ZMgIt2FU27\nF2k0dVtYt7Qv9WvtiQA37Sqadi8Su6lj4sDDJRtbex5AoD1F0/5FYsuevO3Zua09CSCjHUWz\nHYgEQPhAJAAsAJEAsABEAgQFEjIAACAASURBVMACEAkAC0AkACwAkQCwAEQCwAIQCQALQCQA\nLGBZpKiTDawxqsnGJt0RG1iD7pBN+tNi9bpDNutPi9W51sOLxl3Lj23blLvWs03KfZuVe27U\niLi6RrlrLdus3De2gVuVnM0DIqkAkdSASKGkBZG0gEgeQCSIpANE8gAiQSQdIJIHEAki6QCR\nPIBIEEkHiOQBRIJIOkAkDyASRNIBInnQDkUaVZdeaBndr2JkLHcvTQsiaZGfSHrRQKRWFaky\nkrkc5Ng+M2f3HZm7h0huCiySZjQQqRVFWnBvz0xasb6TGJtWVpe5h0gCBRVJOxqI1IoiVU54\nOpPWykiUserIksw9RBIoqEja0UCkVt21+zyT1vySxGXtSqdn7hNtT9xzzz0v13Gw5jpN6vVH\nDL2qny76I66erjuvBv1nwmJ8g7Vo7o1H8x//Wj40NSl3/fj2GuW+Lco9dSY79gnlrjHWoNzX\nPVlbIk3rlbi9bGLmPnHbs7i4+HqdrdlhExWE3xb+mTUHd8nhG023eDT32Z2cnF40vxBlfDh0\nx0JcjUdSw0ykuSWJi56UTsvcJ9pWVFZWfr2ZgzVt1mRrTHfEl3TaVE2mzdId8Qr10p1XVaP2\nCNbArW+1Fs1n8Wi+9a3lR22tctej6Tnlvs3KPbcy5dfy2440X7VvPatSnkLzFm61SgzATKQV\nkfgOfG1kUeY+24PbkyzIe6Tl9GvdIfrvkT6hXrpDCvypnWY04bxHWrcT/VV5s6G8R/qA6GXV\nvt+F90ix8imMzexdl7mHSAKtJZJaNOGINJ80XqdQRHqW6C7Vvq0u0nvx/e4xFUuXXzUidw+R\n3LSKSMrRhCPSOKITlDcbiki3El2h2rfVRRo0gLGWF/pVjGjO3UMkN60iknI04Yh0L9GuypsN\nRaRLic5Q7Yvv2nFAJJNowhHpStqXPlXtHIpIJ3fc6weqfSESB0QyiSYckc6mK+h11c6hiLTn\nIWcUfaXYFyJxQCSTaMIR6cC9n6J/qHYOQ6SldH4FTVHsDJE4IJJJNKGI9E2HU6dSf9XNhiHS\n29R/KD2t2BkicUAkk2hCEWka9V1Dv1TdbBgiPUT//Bf9RbEzROKASCbRhCLSs3Q32+3HqpsN\nQ6Q/0Zuf0CWKnSESB0QyiSYUkf5Gr7ATOq1R7B2GSD3os607HK/YGSJxQCSTaEIRqYwWsFL6\nWLF3GCIdsXNVzY93Xa/WGSJxQCSTaEIRqbjDFnYzjVbsHYJIa3c8urrml6qHsiASB0QyiSYU\nkfY8uJ6NoCGKvUMQaQ79prqmP72m1hsicUAkk2jCEGkpnVvP3qfLFDcbgkhjaWB1zT9VD2VB\nJA6IZBJNGCK9RdfUs1VF/6e42RBEupser655XfVQFkTigEgm0YQh0nAaVs82/WBfxc2GIFIF\nvVtds4QuUOsNkTggkkk0YYh0PY2Pi3QGfaHWPQSR4rWra6K7/0itN0TigEgm0YQhUndaGBfp\nCnpXrXsIIu2/T+IsQsd3Wq3UGyJxQCSTaMIQ6fCd18dFupueUOtuX6Svi05NiFRKHyl1h0gc\nEMkkmhBEWtv5mMR57V6mG9U2a1+k/9JlCZFupheVukMkDohkEk0IIs2mixIizYnfKWFfpGdo\nSEKkZxQPZUEkDohkEk0IIiX+FMVFWtv5aLXN2hcp8acoLtJ/qVypO0TigEgm0YQg0l3xN0eJ\nUxbH3yop9bcvUuLNUVykxFslFSASB0QyiSYEka6gyUmRutNCpf72RTq+05rkub/330epO0Ti\ngEgm0YQg0um0IinSn2i8Un/7Iu3+49RJ9M9UO5QFkTggkkk0IYiU+EpDQqSHaJhSf+siJb/S\nkBCpQu1QFkTigEgm0dgX6evEl+wSIr1FVytt1rpIyS/ZJUS6mx5X6Q+ROCCSSTT2RZqS+Np3\nQqSldK7SZq2L9I/E174TIo2lgSr9IRIHRDKJxr5IT9Md6QuN7Xmw0mati9Q/cU69hEhz6Tcq\n/SESB0Qyica+SH9J/DQ2KdJJHVapDLAuUvKnsQmR1u2odCgLInFAJJNo7It0SeJkDUmRymi6\nygDrIiVP1pC89OURO61T6A+ROCCSSTT2RToucfqgpEh/o+dVBtgWaU3y9EFJkXrQJwoDvtMi\nbeFgTVs0qYrpjviKumsX0Z7WEuqlO6S6UXsEa+DWJZeFsxZNlauWH3V1Kr12Oyx+08CqtmwZ\nRYNVBjQrT2ArU3kt5yQzqq2P39xArykMqGfVylNo3sqtVosvr2WRXJesLcDFmNdQ9/CLLKfe\nukMKfDFmzWisX4z5K+pRl7i+cX1d3Rzqq7JZ2xdj/jfdFr9tTEz2KRquMKAVL8YcDPcHELt2\nWrTpXbvX6I/R9K7dNx1+rrJZ27t2Q5In/U7u2r2tdCjrO71rx5WDSFq0aZH+Qf+MpkWKHriX\nymZti3QZ/TeaFmkZ/UJhAETigEgm0VgX6Q/JCyOlRDqHlimMsC3SqUUro2mRonsepDAAInFA\nJJNorIt0AS2JZkS6kiYqjLAt0r7JS/WlRFI6lAWROCCSSTTWRfrRbonblEj30iMKIyyL9GXq\n4rEpkS6lD4NHQCQOiGQSjW2R1uyQvJx5SqRxdIPCZi2L9G7qcuYpkW6l54JHQCQOiGQSjW2R\nPqLSxF1KpPl0ocJmLYv0BN2duEuJ9BwNCh4BkTggkkk0tkV6kW5O3KVEWtflKIXNWhZpIL2c\nuEuJ9AFdGjwCInFAJJNobIs0mJ5J3KVEih7VeW3wEMsiXURzEncpkVZ1PDl4BETigEgm0dgW\nqZymJu7SIkVofvAQyyId3fnbxF1KpOiBewaPgEgcEMkkGtsipQ7iZES6gcYFD7Er0vpdDk/e\np0VSOZQFkTggkkk0tkXaZ//kXVqkR+ne4CF2RVpI3ZP3aZFUDmVBJA6IZBKNZZFW0JnJ+7RI\n/6ErgzdrV6Tx9KfkfVoklUNZEIkDIplEY1mkd6gieZ8W6XM6O3izdkUaRg8l79Mi/UvhUBZE\n4oBIJtFYFulxuid5nxYpuvcBwZu1K9LV9FbyPi2SyqEsiMQBkUyisSzSQBqbvM+I9POi/wWO\nsSvSubQ0eZ8Wad1OwYeyIBIHRDKJxrJIv6G5yfuMSH1oWuAYuyIdvEfqPi1S9KfBh7IgEgdE\nMonGskg/S/+zzYh0G40MHGNVpNUdT0otZEQqoXlBYyASB0QyicauSOt3PiK1kBFpFP0tcLNW\nRZpOZamFjEgDgg9lQSQOiGQSjV2RPqEeqYWMSNOpd+BmrYr0fMbcjEiP0tCgMRCJAyKZRGNX\npH/Tn1MLGZFWdyoO3KxVkQbRs6mFjEiTqF/QGIjEAZFMorEr0t/p4dRCRqToIV0DN2tVpN/S\nB6mFjEhf0FlBYyASB0QyicauSFfR26mFrEjn0WdBg6yK9PMO36QWMiJFvxd4KAsicUAkk2js\nivSLzFdEsyJdkz4+6oNVkfY6ML2QFalb0dcBYyASB0QyicauSAdlfrSQFWkYDQ8aZFOk5XRO\neikr0u/o/YBBEIkDIplEY1Wk1dmf0WVFepWuD9qsTZEmZr8lmxXpdhoRMAgicUAkk2isivRh\n9ofdWZEWBadiU6RHsr/byIr0At0SMAgicUAkk2isivQc3ZpeyoqU+Z2dDzZFyv2SMCvSjMBD\nWRCJAyKZRGNVpNzJr7IiRY9J/fLbB5siXZj9bXtWpNWdTgwYBJE4IJJJNFZFujRzEMch0sU0\nO2CUTZGO6pK5slhWpOihuwcMajWRWkb3qxgZSy7OiCQZzsYn7i7ySAsiaZGHSNrRWBXp5MxB\nHIdIN9KYgFEWRXKc/ysn0nlU6T+q1UQa22fm7L4jk4ub58WZ3Wcqe3xwfGE+RBIpqEja0VgV\nKXsQxyHSk3RXwCiLIs2nSGYxJ9K19Kb/qNYSKdZ3EmPTynLXWHr1dsYGv8x34spBJC3MRdKP\nxqZIuYM4DpEmp84g7INFkcbRgMxiTqT76UH/Ua0l0spIlLHqyJLM+vo+axm7dmodd4VGrhxE\n0sJcJP1obIqUO4jjEOmrotMDNmtRpHvp0cxiTqQJdJ3/qNYSaX5Jc/y2dHpmffiT8X3ziweW\nRPpXJtf/UFJSMiTGwVpimjRrj1hHPcIvsoLKwi/S7Hq5mqxFc3E8mif5YhrRtAR0HUkPZ7uy\nbOsP9g/YLAt43Nk1YAb9aUZmMfeyf00R/1EtrFl9BvxqYz4iTeuVuL1sYnp1da8NjG24ZMTm\n6LA+SUEvO+ecc/7SwhGPUxftEVHqEX6Rr6gs/CLulytmLZrz49EM962VD7fQO5KtnkVb/Ydp\nTCBosufTBrGxebcj89sq15dfzUukuSXx0qx0Wnr1sWGZB+p7Tcl24v4AYtdOC/NdO/1obO7a\nXUgLMou5XbtoX5riP8zirt0Be2cXc7t20WN3WOM7qrV27VZE4snWRhal1hounZN9pP94eVoQ\nSQtzkfSjsSnSkdmDOE6R7qCn/IfZE+mbDt2yyw6RetIs32Gt9qldefx/t5m90x8NzShL7HlM\n77+VsZrSXHBcOYikRR6f2mlHY1GkdTv+NLvsEOkl+ov/Zu2JNI36ZJcdIt0UcCir1Y4jjalY\nuvyqEYy9l9gXf/T2RFNV+eAFnw4a0AyRBAp6HEk7GosizaOS7LJDpI+pp/9m7Yk0km7LLjtE\nepLu9B3Wet9seKFfxYh4MIMGxFeuHpNsWz+0/PKHHJ+ycuUgkhb5fLNBNxqLIr1C/y+77BDp\n2x2O89+sPZFuoVHZZYdI79HlvsPwXTsOiGQSjUWRhtJj2WWHSNHDdl3vO86eSL1penbZIdJX\nRaf5DoNIHBDJJBqLIv2eJmWXnSL9khb7jrMnUnHH1dllh0jR7+/nOwwicUAkk2gsinQWLc8u\nO0X6I73mO86eSHseklt2inQafek3DCJxQCSTaCyK9MPv5ZadIv2THvAdZ02kz+i83IpTpMvp\nPb9xEIkDIplEY0+kbzqckltxivQG/cF3s9ZEepOuya04RbqTnvQbB5E4IJJJNPZEep9+l1tx\nirSEzvfdrDWRhtOw3IpTpJfoJr9xEIkDIplEY0+kEXR7bsUpUrTrj3w3a02k6+nV3IpTpFn+\nh7IgEgdEMonGnkh/pRdyK5xIJ3RaLXbPYU2kX9Oi3IpTpG87H+s3DiJxQCSTaOyJ1Itm5lY4\nkbhHRKyJdPjOjgNWTpGiP9nZ71AWROKASCbR2BPpRMdBHF6kv9KLfgNtibS28zGONU6kX/ke\nyoJIHBDJJBp7InU91LHCifQMDfYbaEuk2XSxY40T6Tqa4DMQInFAJJNorIlUyX02x4k0lcr9\nNmtLpDF0o2ONE+lBut9nIETigEgm0VgT6Q261rHGifR10SlCdwe2RLqLO1rEifQmNzk3EIkD\nIplEY02kB7nvL3AiRX+4j99mbYl0BU12rHEiVfoeyoJIHBDJJBprIvFvQ3iRzqQvfEbaEul0\n7ht1nEj8Gzg3EIkDIplEY00k/oMxXqTf0zs+I22JtN/3nWu8SNxHim4gEgdEMonGmkiHcYdq\neJHucfxSScSSSF8X/Z9zlRepF83wHgmROCCSSTS2RHJ9eYAXyfnbWRFLIk2hvs5VXqRbnF+7\ncAOROCCSSTS2RHJ9nY0XaS79xmezlkR6iu5wrvIicV8EdAOROCCSSTS2RHJ9wZoXad2OP/PZ\nrCWR/kIvOVd5kbivpruBSBwQySQaWyLdyZ+9jhfJecY7EUsi9aSPnau8SM4z3glAJA6IZBKN\nLZH68j9CdYnUI3cOVhFLIh3Hn0+VF4n7+a4biMQBkUyisSWS67QILpH+TP/2HmpJpN0O41Zd\nIjlPKOEGInFAJJNobInkOlGPS6SH6T7voXZEWky/4tZdIvVznOLIDUTigEgm0VgSyX0VJJdI\nE+kq783aEek1+iO37hJpqM+hLIjEAZFMorEkkvtkpi6RluWu5SdiR6QH6J/cukukV3LX8hOA\nSBwQySQaSyK5T6/tEim610Hem7Uj0h/oDW7dJZLzxORuIBIHRDKJxpJI7gs+uEU6ucMqz7F2\nRDrfde1yl0jOS2W4gUgcEMkkGksiXey6BJFbpEvpA8+xdkT60e78ukuk6FHeh7K+0yLVcrDm\nWk3qtEespu7hF1lGvXWH1Me0RzDXkBCjqXPX8qGx0fOh4ztXcesxVset30Eve45tUZ6Az2S3\n7lDMNzQ08eu/oWVeY5tYvfIU3JMVX17LIlVxsFiVJtXaI76m7rpDtmkXqaTeukNqmnRHbGON\n3Hp1iNG4a/lRX+/1yNZdD+cbGtk2bv1FGuy52RblCVQzz9dyLpXxDXUN/PpAet1rbAOrUZ5C\nczW3uk18ebFrpwJ27aQscr/27l27D+hSz81a2bV7gf7KN7h37R6he73Gfqd37bhyEEmLtifS\nq3Qd3+AWaXXHkz03a0WkwTSCb3CLNJGu9BoLkTggkkk0dkS6nx7kG9wiRQ/a03OzVkQqp6l8\ng1uk5d6HsiASB0QyicaOSNfSm3yDINI5tMxrsBWRTilayTe4RYrudaDXWIjEAZFMorEj0nn0\nGd8giHQVTfQabEWk7/3Q1SCIdHKHbzzGQiQOiGQSjR2RDnEdxBFFuo8e9hpsQ6QVdKarRRDJ\n+1AWROKASCbRWBFpdacTXS2CSP+iP3tt1oZI79DvXS2CSLfScx6DIRIHRDKJxopIM6i3q0UQ\naQFd6LVZGyI9Rve4WgSRnqNbPQZDJA6IZBKNFZFG0S2uFkGk9Tsd6bVZGyL9P3rF1SKI9KHn\noSyIxAGRTKKxItLtNNLVIogU/VnntR6jbYhUQnNdLYJIqzue5DEYInFAJJNorIjUh953tYgi\nif/UM9gQSdRUECl60B4egyESB0QyicaKSN2K/udqEUUSd74yWBBp/c7CjqMo0i+8DmVBJA6I\nZBKNFZH2PsDdIookfhyQwYJIC6iHu0kU6Sp6Wz4aInFAJJNobIj0BZ3lbhJFEj+gzmBBpH+L\nH66LIv3d61AWROKASCbR2BBpEvVzN4kirRBtS2NBJMnhXlEkiW0pIBIHRDKJxoZIj9JQd5Mo\nkvglngwWRJJ8AUkU6RNx/y8FROKASCbR2BBpAI1zN0lEEr5WmsGCSJKvxIoird/5CPloiMQB\nkUyisSFShOa5myQi/c79Q4cMFkSS/EhDFMnzUBZE4oBIJtHYEOmn4j9QiUjCT+8y5C+S7GeD\nEpF+43EoCyJxQCSTaCyItG6no4Q2iUjCj8Ez5C+S7IfsEpEG0ljpcIjEAZFMorEg0nzJ91El\nIs30eunyF0n2fVSJSI97HMqCSBwQySQaCyKNoxuENolIqzudIN9s/iLJfiEhEekdqpAOh0gc\nEMkkGgsi3UuPCG0SkaKHun/9lyZ/kWS/2ZOIJP76LwVE4oBIJtFYEOlKya/IZSK5TyqcIX+R\nZCdElogU3Wd/6XCIxAGRTKKxIJLsvCYykdynuc+Qv0iyU/TLRDpVfigLInFAJJNoLIh04F5i\nm0ykB9zn7EqTt0jSM23JRBLO2ZUCInFAJJNo8hdplezcjzKRJrguBZYhb5GklzGTiTSYnpGN\nh0gcEMkkmvxF+oB+KzbKRHJfnDJD3iJJL6wpE+lFulk2HiJxQCSTaPIX6VkaJDbKRHJfLjlD\n3iJJL/UsE+kjKpWNbzWRWkb3qxgZSy2Pj8S5iG8T0oJIWuQhknY0+Yt0Kz0vNkpFOm6HNbIN\n5C3ShbRAbJSJtGYH6aGsgoh0/cdi29g+M2f3HZlafnzwvHnz5vNtEMlJaCJZiSZ/kS6lD8VG\nqUg9XVcjS5O3SEfKriEmEyn6o91k4wsiUic67PZlfFOs7yTGppXVJVcGvyy2QSQnoYlkJZr8\nRTpJdlVLqUg30UuyDeQr0rodfyZplYp0AS2RtBZEpOiTZ3egkx781tG0MhJlrDqyJLly7dS6\nKncbRHISmkhWoslfpD0PljRKRXqK7pBtIF+R5kqvsywV6Q/0uqS1UO+RVg8/hTqe/9zWzPr8\nkub4ben0xHLLxQNLIv0ruba1q1at2rDJyWbWtEmTzTHdESuou+6QLdrTWky9dIdsbdQeweq5\ndUlahtGsjkez2beWHzU1ksbldK6ktYFtFRun0uWyzTYrT2ALk72W/6IbJa01tZLGB2m4pLWe\nVSlPIeZ++TREijP3GKIuvaalVqb1StxeNjFxu+GSEZujw/pscbb1LC4uvt5va+GwgXqEX2Ql\nlYVfxE2z34Na0XSLR3Of3clNpz+rdq0uOttu7RTD6QXVrlPpRru1m8Qmb5FWPXZuJzr0xmu6\n0mPJ9bklLfHb0mnZDvW9pjjbHrj55ptH1nOw5npNGlp0R6yh7tpFtKf1OfXWHdKo/9xZjG+w\nFs0t8Wgm+NfyoalJ0vgUPSRpjbEGSesP9pNtVj3pBum/o2voQ0lrk+x5raQektYYa1SeQgv/\nvOrETDxE+nzYKUV0+N/mxRc3dzsy2bQiEt9pr40synXqP15o4/Yk8R5JC8X3SFaiyfs90p9o\nvKRV+h4pejp9KWnN9z3SmfSFpFX6Him6248ljQV5j0R09ODF6eWBByXvYuVTGJvZOynj9P7x\nvcSa0jnONojEEZpIVqLJW6Tu9ImkVS7S5TRZ0pqvSD/8nqyvXKTjOkkOZRVEpHuW5pab00f1\nxlQsXX7VCMbem8iqygcv+HTQgOZsG0RyE5pIVqLJW6Qjdl4vaZWLdCc9KWnNU6T/dThF1lcu\n0iX0sdjYet9seKFfxYj4O+BBAxhbP7T88oeqcm0QyU1hv9mgG02+Iq3d8WhZV7lIY+gmSWue\nIk2l38n6ykX6C40WG/FdOw6IZBJNviLNoYtkXeUizaaLJa15ijSCBsv6ykV6WnYoCyJxQCST\naPIVaSwNlHWVi7S28zGS1jxF+iu9IOsrF2kKXSY2QiQOiGQSTb4i3U2Py7rKRYr+RPaGKk+R\netFMWV+5SF8X/Z/YCJE4IJJJNPmKVEHvyrp6iPRrWiQ25inSCR1Xy/rKRYr+YF+xDSJxQCST\naPIV6QzpQRwvka6jV8XGPEXqeqi0r4dIp9MKoQ0icUAkk2jyFWl/yf/wUU+RhtP9YmN+IlXS\n+dK+HiJdITmUBZE4IJJJNHmK9HXRqdKuHiK9SdeIjfmJ9Ab9QdrXQ6S76AmhDSJxQCSTaPIU\n6b+yT8GiniJ9RueJjfmJ9E96QNrXQ6SX6UahDSJxQCSTaPIU6WkaIu3qIVK06yFiW34i/ZEm\nSPt6iDRbctwLInFAJJNo8hTpZtk3BaLeIp0o+YgtP5F+RYulfT1Ekh3KgkgcEMkkmjxFKqWP\npF29ROpNM4S2/EQ6bFfZd/08RYoeLh7KgkgcEMkkmjxFOl72beqot0i30CihLS+Rvu18nLyv\nl0jdaaG7CSJxQCSTaPIUaXfZ73ui3iKNpNuFtrxEmkU95X29RLpePJQFkTggkkk0+Yn0KV0g\n7+ol0vvUR2jLS6SXpF8oj3qLNJyGuZsgEgdEMokmP5Fep/7yrl4ifdOhm9CWl0h30FPyvl4i\nvSUeyoJIHBDJJJr8RPoH/UPe1Uuk6AF7C015idSXpsj7eom0lM51N0EkDohkEk1+IvWXnicu\n6iPS2bTc3ZSXSKfRV/K+XiJF9xQOZUEkDohkEk1+Il1An8q7eorUjya5m/IS6fv7efT1FKm4\no/vMsBCJAyKZRJOfSD/2OIjjLdJQetTdlI9IXxWd7tHXU6Qymu5qgUgcEMkkmrxEWrPD8R5d\nPUUaRwPcTfmINJku9+jrKdLfhKtnQCQOiGQSTV4ieVxvKOoj0nyKuJvyEelJusujr6dIz9Jt\nrhaIxAGRTKLJS6TR8ivgRX1EWrfjT91N+Yh0E43x6Osp0jThUBZE4oBIJtHkJdIQetqjq6dI\n0aOEixnlI9LFNNujr6dI33T4uasFInFAJJNo8hLpMvqvR1dvkS6k+a6WfEQ6pvO3Hn09RRKv\nwg6ROCCSSTR5iXRq0UqPrt4i3UDjXC15iLR+15949fUWSTiUBZE4IJJJNHmJtO/+Xl29RXqE\n7nW15CHSIu/MvUW6kv7DN0AkDohkEk0+Iq2gM7y6eos0ka50teQh0qt0vVdfb5HupUf4BojE\nAZFMoslHpHepwqurt0jL6RxXSx4i3U/Dvfp6izSObuAbIBIHRDKJJh+RHqe7vbp6ixTd60BX\nQx4iXUNvevX1Fmk+Xcg3QCQOiGQSTT4iDaSxXl19RDq5wzd8Qx4inUefefX1Fmldl6P4hu+0\nSE0crKVJF+0Ra6mH7pCYdpEvqCz8IjHWzK03hhiNu5Yfza6uvWmZV9cWFvN66HJawDcweT8Z\n7n9HP9rDs6t7sg6O7lLPd/WerIBrAg3iy2tZpA1ONrLGDZpsatId8Tn9WnfIZu1pLaReukO2\nNOiO2MzqXevhReOu5UfNNn796M5rvbrWs81eD91Gz/INzcoT2MT413JNp2LPvtW1ng+V0Hxu\nvY5tUZ5CbCO3qntVc324P4DYtdOijezard/lCM+uPrt2z9OtfIP5rt0M6u3Z13vXTjiU9Z3e\ntePKQSQt2ohIn1B3z64+In1IZXyDuUij6BbPvj4iuQ9lQSQOiGQSTR4ijac/eXb1EWl1x5P4\nBnORbqORnn19RPqP61AWROKASCbR5CHS3+khz64+IkUP3oNfNxepD73v2ddHpM/pbG4dInFA\nJJNo8hDpanrbs6ufSL+gpdy6uUjdiv7n2ddHJPehLIjEAZFMoslDJLcQTvxEcgtoLtLeB3j3\n9RPp5x04ASESB0QyiSYPkdy7aE78RHLvEhqL5N5F4/ATqQ9Nc65CJA6IZBKNuUjChwZO/ERy\nf0hhLNJ/qJ93Xz+RXB9SQCQOiGQSjblIH9Kl3l39RHJ/bG4s0qM01Luvn0jP09+cqxCJAyKZ\nRGMuknBg1YmfSO4DucYiDRB+I+jAT6Tp/KEsiMQBkUyiMRdpED3r3dVPpOjR/O/DjUWKCL9a\nd+An0upOxc5ViMQBwP1nhQAAFAxJREFUkUyiMRfpt/SBd1dfkS6iOc5VY5F+2nmtd18/kaKH\ndHWuQSQOiGQSjblIws8hnPiK5Pr5halI63Y6yrNngEjncp/cQyQOiGQSjblIwg/0nPiK5PpB\noKlIwg/0OHxFuobecqxBJA6IZBKNsUjiT8ad+Irk+om6qUjCT8Y5fEUaxv1EHSJxQCSTaIxF\nEk9i4sRXJNdJU0xFEk5iwuErEn/SFIjEAZFMojEWSTytlhNfkVyn8TIV6Uqa6NPXV6SF3KEs\niMQBkUyiMRbpBvqXT1d/kfgTS5qKdA4t8+nrK9L6XQ53rEEkDohkEo2xSOKph534i8Sf6thU\nJOHUwxy+IvGnOoZIHBDJJBpjkcST4TvxF4k/+b6hSN90ONmvr79IFzlPvg+ROCCSSTSmIkku\nz+LEXyT+cjCGIn1Av/Xr6y/SjfRybgUicUAkk2hMRZonXjDMib9I/AXKDEV6lgb59fUX6Qnn\nBcogEgdEMonGVCTJJSyd+IvEXzLTUKRbhUtYcviLNJmuyK1AJA6IZBKNqUiSiyo78ReJv4iz\noUhl9KFfX3+RviLHRZwhEgdEMonGVKR+NMmva4BIF9CnuRVDkU7qsMqvr79I0X1/kFuGSBwQ\nySQaU5HOcl+tiydApP70em7FUKQ9D/btGyDS/xV9lV2GSBwQySQaU5EO2Nu3a4BI/6B/5FbM\nRFpK5/r2DRCpL03JLkMkDohkEo2hSN906ObbNUCk16l/bsVMpLfpat++ASLd4TiUBZE4IJJJ\nNIYivU99fLsGiPQpXZBbMRPpIfq7b98AkUbTX7LLrSZSy+h+FSNjqeWGJ64uG/QlY+MjcS7y\nSAsiaZGHSNrRGIo0km737RogUnS3H+eWzUT6E4337Rsg0sd0SXa51UQa22fm7L4jU8t3Vny8\ndEjfavb44Hnz5s2HSCIFFUk7GkORbqFRvl2DRDq+05rssplI3Wmhb98Akb7d4bjscmuJFOs7\nibFpZXXJUCILGasrncoGv8x34spBJC3MRdKPxlCk3jTDt2uQSKX0UXbZTKQjdl7v0zNQpOhh\nuUNZrSXSykiUserIksTyigHx0FrKJ7Brp9ZVQSQZhRRJPxpDkU7suNq3a5BIN9Po7LKRSGs7\nH+3fN0ikX+YOZbWWSPNLmuO3pdOzDbMiy1suHlgS6V+ZXH13/PjxM6o5WKxak23NuiP+R911\nh9RoT6uSemsXadIewRq59W3WopkQj2aBby0/6uuzi10P9e/axGp8H3+O7s4utyhPYBvLvpaL\n6BL/vvUN/o//mSZmFhtZrfIUmre5ZpSHSNN6JW4vm5hebXmn51NswyUjNkeH9UkK2rO4uPh6\n5a1ZYwP1CL/ISioLv4ibZuWeQdF0i0dzn4UZraPu+W1gPl2V3wbeptvy28DT9GR+G0jSJDap\nizS3pCV+Wzottbb25rJMbvW9piTu8BeJL1LAv0hB0dj6i/QOXeffNegv0rqi07LLRn+R7qMR\n/n2D/iJNouszi631F2lFJL7TXhtZlFxZVjYst5/Yf3x2kduTxHskLczfI+lHY/Ye6UG6379r\n0Huk6P77ZheN3iNV0Lv+fYPeIy3JHcpqtU/tyuP/u83snfxoKHbFM8m26f23MlZTOgciCRT0\nUzvtaMxEuo5e9e8aKNIZ9EVm0Ugkx3g5QSJFu/4os9Rqx5HGVCxdftUIxt6byOaUzFgcZ2NV\n+eAFnw4akNub58pBJC3yOI6kHY2ZSL+mRf5dA0Vy/EUxEukH+/p1jCqIdEKnzAePrffNhhf6\nVYyIBzNoAJsQSfIWWz+0/PKHHJ+ycuUgkhb5fLNBNxozkX4ScBAnWKS76fHMoolIXxedGtA3\nUKRSmplewnftOCCSSTRGIn3b+diAroEivUwDM4smIv2XLgvoGyjSzfRiegkicUAkk2iMRJpF\nFwd0DRRpDl2UWTQR6WkaEtA3UKRnaHB6CSJxQCSTaIxEGkM3BXQNFGntjtlvJpiI5PxmhJxA\nkaZSeXoJInFAJJNojES6k54M6BookuO7ciYiXeL4rp6cQJG+LjolvQSROCCSSTRGIl1O7wV0\nDRapO32SXjIRyfntcTmBIkX33ye9AJE4IJJJNEYinU5fBnQNFin3eyITkZy/Z5ITLNKZmUNR\nEIkDIplEYyTSft8P6hosUu4XrgYicb+wlRMsUgW9k1qASBwQySQaE5G+KjotqGuwSLlzLhiI\nxJ3zQU6wSPdkDmVBJA6IZBKNiUjvUd+grsEi5c4CZCASdxYiOcEijc0cyoJIHBDJJBoTkZ6i\nO4O6BouUOy+dgUjcefHkBIs0l36TWoBIHBDJJBoTkW6il4K6KoiUPVOqgUjcmVrlBIu0bsef\npRYgEgdEMonGRKSeNCuoq4JI2XN3G4jEnTtcTrBI0SPSl3iCSBwQySQaE5GO3SHoII6KSNmr\nSeiLxF/NQo6CSD3Sh7IgEgdEMonGRKRdDwvsqiBS9vpG+iLx11eSoyDSn+nfyXuIxAGRTKIx\nEGkx/Sqwq4JI2Svu6YvEX/FPjoJID6cPZUEkDohkEo2BSBPousCuCiKtylwDVl8k/hq0chRE\nepuuSt5DJA6IZBKNgUgP0IOBXRVEyl6VXF8k/qrochREWka/SN5DJA6IZBKNgUjX0huBXVVE\nOoeWJe/1RTq1aGVgXwWRonsdlLyDSBwQySQaA5HOp8rArioiXUkTk/f6Iu27f3BfFZFOTh3K\ngkgcEMkkGgORDt09uKuKSPfSI8l7bZFW0BnBfVVEujR1KAsicUAkk2j0RVrd6cTgrioijaMb\nkvfaIr1LFcF9VUS6lZ5L3EEkDohkEo2+SDNVXgIVkebThcl7bZEep7uD+6qI9BzdmriDSBwQ\nySQafZFeoL8Gd1URad1ORyXvtUUaSGOD+6qI9AFdmriDSBwQySQafZFupxHBXVVEiv6089rE\nnbZIF9Gc4L4qIq3umDyUBZE4IJJJNPoi/Y7eD+6qJFKE5ifutEU6uvO3wX1VRIoeuGfiFiJx\nQCSTaPRFOqXo6+CuSiINoHGJO12R1u9yhEJfJZFSh7IgEgdEMolGX6Tv/VChq5JIj9LQxJ2u\nSJ9Qd4W+SiKlDmVBJA6IZBKNtkhf0FkKXZVEmkT9Ene6Io2nPyn0VRLpvuShLIjEAZFMotEW\naRL9XqGrkkhf0NmJO12R/k4PKfRVEulfyUNZ32mRNjjZyBo3aLKpSXfE5/Rr3SGbtae1kHrp\nDtnSoDtiM6t3rYcXjbuWHzXb4jeP01CFrvVss0KvvQ9I3DYrT2ATS7yW19DbCn2raxU6fUIX\nxm/r2BblKcQ2cqtbxZfXskgxDtYS00V7xDrqEX6RFVSmO6RZu0iz6+WSXKi0VaJpbo7f3Epv\nK3RtYcF9YrHTiqoSM1CeQGqyv6RvFboqvexNO/80lphss/oM+NVG8eXFrp0K2LUroXkKXZV2\n7aJ9kp+k6+7aHbyHSl+lXbvUoazv9K4dVw4iafGdFil9FDUANZFup5FRbZFWdzxJpa+aSMn/\nFiASB0QyiUZXpPU7HanSVU2kUXRLVFukD1Pf6wlCTaT/R69AJBcQySQaXZEWpL9pGoCaSDOo\nd1RbpOdT3zQNQk2kxxKHsiASB0QyiUZXpH+lf/sQgJpIqV9kaIo0iJ5V6asmUvLDfIjEAZFM\notEV6b70r/ECUBMpekjiN4KaIv2WPlDpqyZS8vAyROKASCbR6IqU+X14AIoinUefaYt0codv\nVPqqiZT8whNE4oBIJtHoipQ5Y0kAiiJdQ29qi7TXgUp9FUXqVvQ1ROKBSCbR6IqU+uFBIIoi\n3U/DdUVaTuco9VUUKfGjEIjEAZFMotEUKf1TuEAURXo1ca5JPZEm0pVKfRVFSvxMESJxQCST\naDRF+kDtII6qSIsSmemJ9Ajdq9RXUaTED+chEgdEMolGU6Tn1A7iqIq0ftef6Ip0Q+rXgIEo\nijQjHihE4oBIJtFoipQ+gVUgiiJFj+n8raZIF6Z+nx6IokiJQ1kQiQMimUSjKdKlmauDBaAq\n0sU0W1Oko9JXBwtCUaTE6S4hEgdEMolGU6STM9erDEBVpJtojJ5I63b8qVpfVZHOp0qIxAGR\nTKLRFCl92vlAVEV6ku7SE2k+RdT6qop0Lb0JkTggkkk0eiJlLoQSiKpIk+lyPZHG0QC1vqoi\n3U8PQiQOiGQSjZ5ImUtzBaIq0ldFp+uJNJQeVeurKtIEug4icUAkk2j0RMpcLDIQVZGi399P\nT6R+NEmtr6pIi+lXEIkDIplEoydS5vLFgSiLdBp9pSXS2bRcra+qSNFdfwKROCCSSTR6IvWg\nT9S6KovUl6ZoiXTA3op9lUU6doetEMkJRDKJRk+kIxQP4qiLdAc9pSPSlg7dFPsqi9STFkEk\nJxDJJBotkap2/JliV2WRXqKbdESaQ30U+yqLdBONh0hOIJJJNFoiLabfKHZVFmkW9dQRaQzd\nrthXWaSn6D6I5AQimUSjJdKrNFCxq7JI33Y+TkekITRKsa+ySO9RP4jkBCKZRKMl0jB6XLGr\nskjRw3aNKU9gI/sdzVDsqyzSV0VnQiQnEMkkGi2RrqR3FLuqi/QrUjoFQ5KN7OSOqxX7KosU\n3W8/iOQEIplEoyXS2fSFYld1kf5IU5QnsJHtcYhqX3WRTqOtEMkBRDKJRkukH+6j2lVdpAfp\nCeUJbFxH56n2VRfpcpoLkRxAJJNodERaV3Sqald1kd5Q/RZqnI0f0LWqfdVFupNeaiWRWkb3\nqxgZ45edbUJaEEmLPETSjkZHpJlUrtpVXaRKpQtZptg4gu5X7asu0hga3Eoije0zc3bfkfyy\nsw0iOSmoSNrR6Ig0igardlUXKdr1MOUJbLyJXlXtqy7SLLq0dUSK9Z3E2LSyOueysw0icRRS\nJP1odES6lV5U7aoh0gnKH8RFN/6GFqn2VRfp284nto5IKyNRxqojS5zLzjaIxFFIkfSj0RGp\njD5S7aohUi+aqdp145G7rFftqy5S9IhdlCdrVaT5Jc3x29LpzmVn2xP33HPPy3Uc667qp4v2\niN9R9zpN6pt1RyynH+vO60r95z48xle1Fs298Wj+w78ES9Snt3+nraqvU4zVq3YdTL9WnkHn\n41W3WtfYpNy1hPoqz+BF19h8RJrWK3F72UTnsrOtZ3Fx8fX8kM+pEFyp/BSM2bxzIZ7IL/mi\nzcrTC4qmWzya+/gh72jM62Tj180HnQnQNWHM4B6NCVzLD5Vc3lddpLklLfHb0mnOZWfb2lWr\nVm3Y5GRz4/L5mizQH7GiZpMmW5q0R2xYqjuvhcu0R6yp54tai2Z1PJrN3La31n6mPK9P1yu/\nTg1sq3Lf/ylP4JMVtcpbrVHvWvflIuUprHW9fPmItCIS32mvjSxyLjvbknB7kgV5j7SB6b8Z\n0Z8Wq9cdUsj3SPrRaF9DVg2N90jaF2NWQ+M9Umv9QjZWPoWxmb3rnMvONojEUdBP7bSjgUit\neH2kMRVLl181grH3JuaWM/cQyU1BjyNpRwORWlGklhf6VYyIvwMeNCC3nLmHSG4K+80G3Wgg\nEq7Y5wIimUQDkSCSC4hkEg1EgkguIJJJNBAJIrmASCbRQCSI5AIimUQDkSCSC4hkEg1Egkgu\nIJJJNBAJIrmASCbRQKTvuEjVTraOe69ak20NuiM2jXtfu0i97ojouOnhF/l23Efcek2I0bhr\n+VFbq9z1o3FrlfuqJ71h3AfKfWvrlLvOGbdKua9rsrXiy2tZJI6G4qtD3HqaLcV/Dr/ImuJb\nwi+yovjO8Itka90RxmYHF68MYavR4htD2Cp7oHixxa1BJBUgkhoQKRQgkhYQyQOIBJF0gEge\nbPciNVd+HeLW08Qq/xd+kcbKVeEXqa9cE36RNA3h1Fpd2RDCVpsqvwlhq2xtpeQzA2PCFAmA\n7QaIBIAFIBIAFghbpFHqZ2czwn2G67AI+3nE37Y8cXXZoC/DruLA+lMKL4sQXn3bL3fIIlVG\nqsIt4D7DdUiE/jwYu7Pi46VD+laHXSaL/acUWhZhvPq2X+5QRVpwb8+Q/wEKZ7gOhfCfB2PR\nyELG6kqnhlwmQwhPKawsQnn1rb/coYpUOeHpkP8BCme4DoXwnwdjKwbE/wW2lE8IuUyGEJ5S\nWFmE8upbf7lD3rX7POR/gM4zXIdJ2M8jzazI8kKUSWL9KYWXRVivvs2Xu42L5DzDdZgURKSW\nd3o+FX6VDNafUnhZhPPq2325QxJpRiQSSXwZIOx/gM4zXIdJIURae3NZ6P8hsBCjCS+LUF59\nyy93SCLFampqEi9r2P8AhTNch0QBRFpWNkz9tPl5EFo04WURxqtv++Vu47t2whmuQyJ8kWJX\nPBNyBRfWn1J4WYTw6lt/udu4SMIZrkMifJHmlMxYHGdjyGVy2H9KoWURwqtv/eVu6yK5z3Ad\nEuGLNCGS5K2Qy+Sw/5RCyyKEV9/6y43v2gFgAYgEgAUgEgAWgEgAWAAiAWABiASABSASABaA\nSABYACIBYAGIBIAFIBIAFoBIAFhguxNpTseB8dt7OnzY2hMBbtp0NNudSOwvHeex5V1uaO1p\nAJG2HM32J1Ld4Sc2nX2Y5cvhARu05Wi2P5HYB0Vntc29h/ZPG45mOxSJ9ac/tvYUgJy2G832\nKFIPOq2ltecApLTdaLZDkZ6nP9HjrT0JIKMNR7P9ibR6j3J20e4FuAIf0KUtR7P9idTje1H2\nza4lrT0NINKWo9nuRBpFL8Rvh9O41p4IcNOmo9nuRAIgDCASABaASABYACIBYAGIBIAFIBIA\nFoBIAFgAIgFgAYgEgAUgEgAWgEgAWAAiAWABiASABSASABaASABYACIBYAGIBIAFIBIAFoBI\nAFgAIgFgAYgEgAUgEgAWgEgAWOD/A1nmhXTIYQtjAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "library(ggplot2)\n", "library(patchwork)\n", "\n", "data1 <- data.frame(x=c(-1.,0.,0.,1.,1.,2.),\n", " y=c(0.,0.,2.,2.,0.,0.))\n", "data2 <- data.frame(x=c(-1.,0.25,0.25,0.75,0.75,2.),\n", " y=c(0.,0.,1.,1.,0.,0.))\n", "data3 <- data.frame(x=c(-1.,0.,0.,1.,1.,2.),\n", " y=c(0.,0.,1.,1.,0.,0.))\n", "data4 <- data.frame(x=c(-1.,-0.5,0.,0.5,1.,1.5,2.,2.5),\n", " y=c(0.,0.,1.,0.,0.,1.,0.,0.))\n", "\n", "f1 <- ggplot(data1,aes(x,y)) + geom_line() + labs(title = \"Figure 1\") + theme(plot.title = element_text(hjust = 0.5))\n", "f2 <- ggplot(data2,aes(x,y)) + geom_line() + labs(title = \"Figure 2\") + theme(plot.title = element_text(hjust = 0.5))\n", "f3 <- ggplot(data3,aes(x,y)) + geom_line() + labs(title = \"Figure 3\") + theme(plot.title = element_text(hjust = 0.5))\n", "f4 <- ggplot(data4,aes(x,y)) + geom_line() + labs(title = \"Figure 4\") + theme(plot.title = element_text(hjust = 0.5))\n", "(f1 + f2) / (f3 + f4) " ] }, { "cell_type": "markdown", "execution_count": null, "id": "e4478c91-4ec6-44bf-ad72-037a24316435", "metadata": { "tags": [] }, "source": [ "## Exercice 6: \n", "\n", "1\\) Est-ce que les fonctions suivantes sont des fonctions de répartition? Si oui, le sont-elles pour des variables continues ou discrètes ?\n", "\n", "**Solution**: \n", "- Le premier et le dernier graphique représentent des fonctions de répartition de lois discrètes.\n", "- Le deuxième et le troisième représentent des fonctions de répartition de lois continues.\n", "- Le quatrième graphique représente une fonction de répartition d'une loi qui est ni discrète, ni continue (c'est en fait une loi mixte).\n", "- La fonction représentée sur le cinquième graphique n'est pas une fonction de répartition, car elle n'est pas croissante. \n" ] }, { "cell_type": "code", "execution_count": null, "id": "836eff77-3990-453b-b2ea-05b9105badb8", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOydCXjU1NrH37aAoCiKuF4R9bpf\nl6sV9bqC29VPp1ewCGJBK7ihKIheXMC6AV5cEdxBFhEQRVxRWcQioGxFQSplUbZCaYCWbtNp\nZ3q+ZLJMcnIySWYyM+nk/T8Pk5P3nOQ959/zo5nTmQQICoWKW5DqDqBQ6SAECYVyQAgSCuWA\nECQUygEhSCiUA0KQUCgHhCChUA4IQUKhHBCChEI5IAQJhXJACBIK5YAQJBTKASFIKJQDQpBQ\nKAeEIKFQDghBQqEcEIKEQjkgBAmFckDuAakeFF1DBsHXsZ7n6oed7FUq5YgjM7oe3jZ7WI3D\nXUuRnHCk8aV/HXrUFR853TVXgXTuP0XdGwdIa+BOR7uVQjnhyIMAx19yEJy0z+nOpUQOOBK6\nHLLOv6Al3OVw11wFUlDZWft5WUwnafrx9LQCKV5HfoDW3xJSfg3c7ly3UigHHHkXzt5NyB9H\nwgLnuiXIpSCZq5bVuN/B/C/99ATJXCxH8uB1YVN+wAENDnUqpXLAkevgV2EzEp52qE+SXArS\n4+Kv7XGXt7v87b/gQeES5UchsBjuI+QFWLnkn5mV/F7uiQdnjw1EzjEsN/dfaQpSbI50hj/C\n2/NgTVK7niA54EjHjPAZJjl9bedqkO6EAy89Dq7Xm/TBQcddW0tezco65+I2cHWt+jSfpzVI\ndh0Z8ag/vD0etie58wmRA47U14c3d8BrznbNzSB9ARftFX4J601q9wzfdG1Wp9WE7O4KT6hP\nk9YgxeQIr0/g7GR2PGFyxpH6RZ/2hnOqnO2aq0CSlCuZ1Fm8HjlPb9IFQrkbzBU2O1sfGlKd\nJr1AcsIRQmYelPV9kvueGDnjyCb++JOc/g3tKpCkpc1HRZMask4LV4zQmzRcKP+tnWiO/D5A\nVHqB5IQjf+ZA6ylJ7nqC5IwjVRNf6p7RfrmzXXMVSNpf2yVwXbj8od6k9/hideSPc0tVp0kv\nkOJ3JPRya7i8OLkdT5gcmiNEWAU/z9muuRikNZJJ01Qm/SSaNJUvVsLRz0jarDpNOoMUgyN7\nL4NOM5Pc78QpfkeaguKvqGBrqHa0ay4GqTbjjHD5RZVJMyImkSOOYZ0mnUGy70jdvyDP4XfV\nqVT8jiyF68VCB6h0tGsuBomcCuuE8oWiSbOF8l0qk66DRcJm34kXqU+TziDZd+Rl6JPULidY\n8TuyN/Pw8Er4BjjR2a65GaSP4TL+f43R4aXNl8HH187OUpm0BI4u4t85+rR/o05rkGw7cnLG\nzhR0PGFywBEf3MGTVHopPONs19wMErkNDrnyhKwB8CghW9rBqXkXw6kqk/hGGadffShcEVCf\nJq1BsutIBWQcJyld/yBrd45sPRraX3ZhG7iq0dmuuRok8lp2mwvmTYRn+eLqG48AuOgPtUnk\nG1/HQy54Q8NRmoNk05FVkVWrLcnte2LkxBzZ/fDJrY+9amKTw11zD0h6le0Ib56HD8X9iq0p\n7IwrhI7Qco0jbgbpJlgrbM5uXZ7qnrhF6Agt1zjiZpCmwkW/+df3hX6p7ohrhI7Qco0jbgaJ\nPJYlXN3fsjfV/XCP0BFabnHE1SCRkneGf7Ay1Z1wldARWi5xxN0goVDNRAgSCuWAECQUygEh\nSCiUA0KQUCgHhCChUA4IQUKhHBCChEI5IAQJhXJADoO0h6XapkpWeF8Ds3Udu3VFgNna31TB\nbF3PbF3ftI8VrlS3dvh289JZq5pqmN3fz4oGmvaywo3MkTb5WeEaZjoDbxuZ6ULyz8fZ72TL\njtQ0VbGyStrPHJWua0w1MIcjyWAySqqqjVK5t0meg/v1o3IYJI6lOlLJCu9tNGhdwQrva2C2\n9pN9rHBFgNm63qB1vbpbCXGkitQwu7+fFW0ge1jhICu4j/hZ4RpmOgNvg8x0RP75VCTEkRpS\nxcoqqbI+SmWka0w17o1SaTAZJVXVRancQ+RZxfivBUHiECQESRaCRAlBQpDYQpAQJARJ1zWm\nECSpNYKEICFI1vuOICFIhkKQrPcdQUKQDIUgWe87goQgGSrNQZrslwpNU/vlTwhGtpRJlvqe\nFiBZdcQ7IFl1xMsgFfvkG7LP6L10ed8JkS1lkqW+pwNIlh3xDEiWHfEuSKtHdZdNCvb9jpDC\nnn55S5tkqe/NHyQbjngEJBuOeBek4tnvySZt8XGEVPvWyVvaJEt9b/4g2XDEIyDZcMS7IBGy\nUTapKEd4XFPuYnkrxD6bNGnS3BqWGoifFa4NGbSuY4XrgszWjXZa73ntxeefY+j5kfw/pVuO\nOfIR78hP0lnrSYDZ/XpWNEiYY2X6VUcaWeEAM53W27K/1i776buvvpr68YcT3wjrFbUrY+V8\njjkS4g2ZtFLuIWGOXZKfOSpZhD11JIVqo1RuG/0CawpIemFElMrnP5BnFcOR2EAq7CG89pkj\nb4XX7tnZ2QPtnC35mg3GypQbhaKdgVZUR7rwjhQ41HXH1Fjyzbgn+t5wwQmHRTEjrKPlQ4LR\nzkcrmiMB3pDsMY4NJSYNMht2FJ0rn4TxJIvYQFqZI9zMP7dQ3gqxJfPmzSuqYilAalnh6qCd\n1jXs1g2khtm6kRWdBH0/nMzQh9MnT56itHLMkZXLli3bXCmqlvgrGQrUsqKNhBWtDLGCVSTA\nCvtZ6Za9eddZrcQ50eKoU7O7+Hrcee+gQcOeGTXqdUHjJ2n0ZVA6zNYzIqM5EuKnyLwNks31\nxM/8iYqqbYhSWUXYk0FSsDpK5SWZE1lTQNLUaVEqp8yVZ1WNftyxgbTZt4+QOt8aeau0sHNZ\nmvz3SOPhFYdX7Sw7kvL3SOVf5B/LA9TqrO5Dxn62ZIP2xA6u2ll2JDXvkXYdeKab3iMF8xYQ\nsvRWv7ylTdLKCyCZOZJikDY93RHg4JteXlnOPHEiQDJzJDUgLYQ7XAPSfP5yd1r++g13j49s\nKZO0SnuQLDiSUpC2PtEWWud+XJqMvyNZdiQ1IL0K41wD0rDBhDRN6Zc/PhTZUiZplfYgWXAk\nlSDNOBYOe7xEKCUNJAuOpAakPrDMBSCZi9mBNAbJsiOpA6m0L7R4YKNYxs/andXSjyCxhCCZ\ngLQ2G86YL0c9D9KOlue54Q+ylk3SKoUg7b7oUJUO9B5IRZ3gP1uVqOdBmgP9ESRmaxOQ/oTW\nnVQ69WePgVTUER5SLdR5HqSR8DaCxGxtClJXddhr30fafBo8qo56HqQesAJBYrZGkKKAtKsL\n5Guingfp5DZVCBKzNYIUBaTHoOsuTdTrIG3OvMgVn/62bJJWCFJqQJrb8ugSbdTrIH0G9yFI\nCJJNkLafkPkpFfU6SMPhXQQJQbIJ0mPQn456HaSbYDmCZBWkogm8Jk6bENY474K0uk2HTXTU\n6yAdd2g5gmQVpCu1X8a6Tl3nJZB8MEYX9ThI66GLO75qbtkkrZILUmcYNnx4wYjhop75WV3n\nIZB+zjhnty7qcZCmwSAEyQZI5XiDSK4mBz7URz0O0mMwGUFCkGyBtCLzLMZ3+DwO0jWwBkFC\nkGyB1BMmMqIeB6nDkS65HZdlk7RCkJIO0h8H/J31pXJvg1QE1yNICJItkJ6EF1mNvQ3SB/AE\ngoQg2QGprGOb7azG3gZpIMxEkKKB9H3nc1U6EEHipkJffKyLTpdllCBI0UAaqv0T7Jmc50Hy\nwUIEiVZ5u04cghQNpP/CDDrsbZD+bH1CNYJEawnczCFICJINkN6AIfjEPp3GwbMcgoQg2QCp\nC/yEIOnUH77iECQEyTpIxVln4zNk9crO/ItDkBAk6yC9CsMRJJ12tj5D2CBICJJVkK6DnxEk\nnRbAbcIGQUKQLIK0vc0JqXyquVVHkg3SyzBa2CBICJJFkKbC/QiSXrfDPGHTTEDax5KfVLHC\nlY3M1vXs1vuNWu/fNxRm6lo3MFsHSCUrXBVQ7Tg8bSpE1ZK6CoYCNaxoI2FFK0KsYBUJUJE7\n4KuKijpmOt5bVjhYyYqSoJLCUUk+15Ia5s+I8SPRiQSj1QYrWNF/tNolbAwmo6Qaf5TKCiLP\nqv36UTkMUgNLIdLICjc2OdR6OHwZ57lDqp1AQhwJkiCzQ8z+NLF9ZI6pkYS0gcAxh9by+djp\n2ONnm0XkcFIdkYcVilIZ6RpTzMrKFheEtwYWyJ2ylrZePyq8tOPS7NJuEfyHw0s7nb6Bu8Lb\nZnJpx+wAgpRMkEbAKxyCpNMLMDa8RZAQJGsg3QDLOQRJp1vgp/AWQUKQLIFUdujfhA2CROmk\ng8rCWwQJQbIE0vfQS9ggSFptzviXWECQ1CCV9s+R1L3Hf3JOR5AiGgbjhA2CpNWnMEAsIEhq\nkOZqv8qXuZBu7V2QusJvwgZB0uopeF8sIEhqkL6DXitFFW8u4l90rT0LUlnbE8NbBEmrG2Gl\nWECQtCDdI5VsPdXcAyD9AD3DWwRJq2MPk25PhiAhSFZA+h+8FN4iSBqtU55KgiAhSFZA6gGF\n4S2CpNFUeEQqIUgIkhWQOrUV/1yCIGk0RHmkAIKEIFkA6Q+4UiwgSBpdBWulEoKEIFkAaTI8\nKhYQJI0OP0YuIUgIkgWQHpL/No0gqbUK/k8uIkgIkgWQLs/YIBYQJLXGw1NyEUFCkMxBEu/K\nKwhBUusB+EQuIkgIkjlIyyFHKiFIal0i3D5fFIKEIJmD9D4Mk0oIkkq7Dz5RKSNICJI5SOEn\nAIWFIKn0E3RXyggSgmQO0pWwXiohSCqNheeVMoKEIJmCVN6+o1xEkFS6C75WyggSgmQK0iq4\nUS4iSCqdl7VVKSNICJIpSBOFpw2LQpAiKm11ZmQHQUKQTEEaAtPkIoIU0Ty4PbKDICFIpiDd\nAL/KRQQpotHwcmQHQUKQTEHqdEi5XESQIroNFkR2ECQEyQykrZkXKWEEKaIzWpVGdhAkBMkM\npO8gXwkjSIq2tchW7SFICJIZSK+Jj9IKC0FS9BX0V+25AKSmqf3yJwTDxSW+sF4ns4TNzTqT\ntEpbkGw4kgyQ7lb93TFFINlwJGkgPSfeMlOSC0Ca0Xvp8r4TwsWKVbyW915I3irgC0U6k7RK\nW5BsOJIMkC6DTUo4RSDZcCRpIHWDJaq91IMU7PsdIYU9/Urgs6cJKZiubcTsQLqCZMeRZIB0\n+N8i4dSAZMeRpIF0Qtvdqr3Ug7TFxxFS7Vsn75f3LiPkvoV+zYMRmR1IV5DsOJIEkNbBNZFw\nakCy40iyQNqQcal6N/UgFeWE+NfcxfL+6+/wl8TdhuT4BhSH95+5//77xzGfGGj0tEFbj6fU\ntF4MA6O3NnhyorOPvjRzZAjvyGTprEl49OW38GgknJpHX5o40sgbcv9ncg+T9OjLb2CIejf1\nj74s7CG89pkj7Zb22EPInlvGV3Cje4cB7Z6dnT3Q8tls67UeKl0NDycsUchySzNHuvCOFDje\nP0O9AZMSc+Kg5ZYmjgR4Q7LHJKCH0fQCzHT8nI36kHWQVuY08a+5hdLum6PlivoeC4RNzf79\n+2v3sFRH9rPC+xqZrf2kkhU+TPsAiuekcD2pYLWuDDDPzV/aMVvXq7vlmCNVvCN10lmrSQ2z\nQ1WsaAPZywoHWcEKInc+H76PhGuZPwoDb4PMdET++TAuZGJ0hDdkv9zdGlLNyippf32UykjX\nmGrU/JBvgCL1rsFklFTtj1K5l8izKq6nmm/28VOszrdG3Av0WqHUDJilFJnXlo68R2p30kqV\nfpfDqXyPZMeRJLxHugw2R8KpeY9kx5FkvUc6ur2mMvXvkYJ5/H8qS2+VVmSW9BR+4S8ewLNZ\nmxvxi9kBZ0A6jdk6pat2NhxJAkhHHq0Kp2jVzoYjSQLpd7haU5l6kMi0/PUb7h5PyHzhEnjc\n00KoKq9g9e/DBkfeVjA7kK4g2XEk8SBtgitU4RT9HcmGI0kCaYp871lJLgCpaUq//PG8H8MG\n8zv3TAvHykfm3TFGtbjJ7EDagmTDkcSDNAf6qcKp+mSDdUeSBNJg+EhT6QKQrIjZgbQFyYYj\niQdpDLyoCuNn7SR1hd81lQgSghQdpAfhM1UYQRJV3v5v2koECUGKDtJ1ypNLBCFIolbATdpK\nBAlBig7SCQeXq8IIkqj3lHvPSkKQEKSoIJVmqb++hiBJuh9maSsRJAQpKkiLoZc6jCCJujhj\nk7YSQUKQooI0BZ5UhxGksMoO+jtViSAhSFFBKoDx6jCCFNYiyKUqESQEKSpIfeAHdRhBCmsM\njKAqESQEKSpIl8Jf6jCCFNadMIeqRJAQpKggHXOUJowghXVui21UJYKEIEUDaWvGvzRhBElQ\naauz6EoECUGKBtKPkKcJI0iCvoc+dCWChCBFA2kCPK0JI0iCXoRX6UoECUGKBtJTMEkTRpAE\n9YKFdKUHQdo2+1OVDkKQooHUCxZpwgiSoNMO2ElXehCkfO3tTs5ktkaQRJAuzNyuCSNIvLZk\nddZVehCkbnDnQxE9/BWzNYIkgnQE9bUbBInXF3C3rtKTIBWpwpo7rUaEIIVB2gKXasMIEq9n\n4C1dJYKEIEUB6Uf1Y1IFIUi8/gM/6yoRJAQpCkgT4SltGEHidfwhu3WVCBKCFAWkAnhfG0aQ\nhNvnX66vRJAQpCgg3QnztGEEieM+hof0lQgSghQFpC6wURtGkDjucZior0SQEKQoIHVqR4UR\nJI77N6zWVyJICJIxSLta/pMKI0gcd9ThjEoECUEyBmkF/IcKI0jcb3AtoxJBQpCMQZoJg6gw\ngsRNgv8yKhEkBMkYpJfgdSqMIHGDYDqjspmAVM1SgNSxwjVBZusGUisWcmGdKlxr0lqr2kZm\n60Z26zp165qEOOIn9czuM50Jsn0MMUdKGqqrH4Y5VLg+wEzHHn+ohhUlcr7EOFJP/MxRiqpj\n/wDprjElDacr/MmoNJiMkvxM2yTVkEalpJPDINWw1ED8rHBtyKB1nVjgQVKF64LM1o1ya60M\nW9cyWzequ5UQR+pJgNkhpjNBto9NzL4TvvM58AcVDjDTNbDdCjFdIfLPJzGOBEg9c5Si/I1R\nKiNdY0ocTvWhx7MqDSajpPqGKJW1JKiUdMJLOy4NLu3OallGhfHSbhn4WJXN5NKO2QEEKdEg\ntTuRDiNI71BfvpeEICFIhiBthC50GEG6F2azKhEkBMkQpAVwBx1GkC6kb58vCkFCkAxBmgjD\n6bDnQSo78BRmJYKEIBmC9Iz2BvqCPA/Sj3ArsxJBQpAMQboL5tJhz4P0GoxiViJICJIhSFdB\nCR32PEh94VtmJYKEIBmCdHJbXdjzIJ3dcjuzEkFCkIxAKj/gDF3Y6yDtaHkOuxJBQpCMQFoL\nN+jCXgfpW/1fBEQhSAiSEUjfwL26sNdBGqX7PLwkBAlBMgLpLRipC3sdpFuhkF2JICFIRiA9\nDh/qwl4H6ZQ2u9iVCBKCZARSb+pJFII8DtJfmRcaVCJICJIRSJdrn8MclsdBms142ygKQUKQ\njEDq1F4f9jhIT8M7BpUIEoJkAFJNy3P1YY+D5INlBpUIEoJkAFIJ66ugHgep4yHlBpUIEoJk\nANJceEAf9jZI6+FKo0oECUEyAOl91uecvQ3SdN19/hQhSAiSAUjD4CN92Nsg/Zd6xrtKCBKC\nZABSH/hJH/Y2SNfCb0aVCBKCZADSFbBFH/Y2SEccaViJICFIBiB1Yj10wdMg/Qb/NqxEkBAk\nNkiNLc5jhD0N0iR43LASQUKQ2CD9BTmMsKdBehg+NqxEkBAkNkgL4UFG2NMgXQ7rDSsRJASJ\nDdIH8D9G2MsgNbQ73rjSBSA1Te2XPyEolmf5eN2sjalMstT35g+SDUcSB1IB8zFAKQLJhiOJ\nA2md7vmFKiUZpIG/6GMzei9d3neCWH6rYNWqVUXamMokS31vXiDF6UjiQLqT9WekZIAUpyOJ\nA2kSPGNcmWSQWsDJT5doQ8G+3xFS2NMf3imYro+pTLLUdwZIa1euXLlu8+qVYV3nKpDidCRx\nIHVh/RkpGSDF6UjiQHoQvjCuTDJI3DtdMuGC13apQlt8HCHVvnXhnfsW+qvomMokS33Xg/Rp\nBmikfrp7qkGK05HEgXRCB1Y4CSDF6UjiQLo480/jyuS/Ryp9/WLIunbifnm/KCfEv+YuFspN\n3Ybk+AYUa2Jqkyz1XQ/SWDgnJ6d7j5tzRA3arapLNUhxOpIwkMpbZLPCyXmPFI8jCQNpV5vT\notSmZLFh5dkArXsUijuFPYTXPnOE1z23jK/gRveuVMe6Z2dnD4x2NnNNhLfjO4ETCkWrtOVI\nF96RggT2NKwt0CPRKYLRKu04EuANyR6T0L7yKoI7Ep2iUR8yBmnHm1e3gBMfvbcdvBneX5nT\nxL/mFioN6nssUMcey8vL+18jSyESZMab6MAEeNOwdVDXOtq5DVo3WWjd4Jgj9/COvCunICFm\n95n9aSLs3rOCP8AQ5onZ6djjZ5tF5LBjjjTwhuRNj94XSQY/QLprLL0Nb0SpNUnLtE2XNmAZ\npI2jL86AU59cxRcrLjo9HNrs20dInW9NpNGAWbqYnd+mrEu7lwwvP1J9aRenIwm7tHsTXmWF\nk3BpF6cjCbu0y4N5UWqTfGkHcFbBWqk85PjwJpi3gJClt4ZXXxYP4C+La3NXqGNqkyz1vXmB\nFKcjCQNpKMxihZMAUpyOJAykf7TaGaU2ySCNWB8ph6Rr5Gn56zfcPZ6Q+XNIVV7B6t+HDQ4p\nMcokS31vXiDF6UjCQLodVrLCSQApTkcSBdL2ltl7oxzqhk82TOmXP55/Kz5sMCHlI/PuGFMV\niVEmWep78wIpTkcSBtLlwLzNR6o+2WDdkUSBNAfudTlIVmSn780fJBuOJAykTof7WWHvftZu\nBIxHkBCksGyAVNYyG0HSKBd+RZAQpLBsgLQabkGQNPp7Gz+ChCCFZQOkL2EIgqTW5syLGxEk\nBCksGyCNhbEIklqz4H4ECUESZQOk/8JXCJJaw+A9BAlBEmUDpNtgLYKk1k2wAkFCkETZAOky\nqEKQ1PrbYeUIEoIkygZIxx9OECSV/oCuHIKEIImyDlJZy/MQJLU+gsEIEoIkyTpIRZCDIKn1\nKExBkBAkSdZB+hwGIkhqXQ1rESQESZJ1kMbCaARJrQ5HcQgSgiTJOkiPwQwESaUiuAFBQpBk\nWQepFyxFkFSaAE8iSAiSLOsgXQrbESSVHoSZCBKCJMs6SB0P34cgqXRpRgmChCDJsgzSzqzz\nESSVdh98AocgIUiyLIO0Am5GkFRaAt04BAlBkmUZpE/hYQRJpXHwHIcgIUiyLIP0KryCIKnU\nH77iECQESZZlkAbBJwiSStlZwpM5ECQESZRlkLrBCgQpop2tzxA2CBKCJMoySNlZpQhSRAvg\nNmGDICFIoiyD1OE4DkGK6CUYLWwQJARJlFWQtmZcgiCp1Fu8fT6ChCCJsgrSIuiFIKl0RqtS\nYYMgIUiirII0FYYiSBFta3F+eIsgIUiirII0Et5EkCL6GvqFtwgSgiTKKkj3wjcIUkTPw9jw\nNh1AqmcpSBpY4UCIfxnVT6UrYKzQOmDYmnVuO61D7NYNmtYJcaSBNDK7z3QmxPaxiQ744M/6\nAAmy2jay07HHrztxWEQJJ8SRRvaskNTAHJW+a2r1hNXicJiDlGQwGa2kDRB5nvj1o3IYpAqW\n6kk1K7y/saJiA2g1WWhdZdSaoQC7dVWDQev9rHC1ujXjfxsHHKkldcwO1bCijWwfQ3Tg9AP2\nVlSRAKttHTOdgbfBSlaUBKVCVUIcqSO1zFGKqmaOStc1jU46aE+U4UjysyejpNr6KJWVRJ4n\nDEdSfGn3O1w2X6VFHF7acZYv7crbnMbhpZ2iTRmXiIV0uLSz03cRpBv1rREkayD9Dv9GkCL6\nBB4QCwiS1BpBsgbS13AvghTRUzBeLCBIUmsEyRpIY2EUghTR/8EqsYAgSa0RJGsgDYHpCFJE\nxxwmPZYaQZJaI0jWQLoFfkaQFK2Dq6QSgiS1RpCsgXRBZimCpOhDGCKVECSpNYJkDaTDj+MQ\nJEWPwFSphCBJrREkSyD9BZdxCJKirvC7VEKQpNYIkiWQFkIehyDJKm9/rFxEkKTWCJIlkCbC\nUxyCJGtlZCYhSFJrBMkSSAXhP0AiSKLeD/+3EhaCJLVGkCyB1AcWcgiSrAHwqVxEkKTWCJIl\nkC6BvzgESda/MjbKRQRJao0gWQLp6KOFVwQprN1tT1LKCJLUGkGyAtJW8VsDCFJYP8EtShlB\nklojSFZAEle/ESRRY+EFpYwgSa0RJCsgTYCnhQ2CFNZd8I1SRpCk1giSFZCehMnCBkEK67ys\nrUoZQZJaI0hWQOoFPwkbBElQaaszIzsIktQaQbICUufMHcIGQRI0D26P7CBIUmsEyQpI7TuG\nNwiSoP/By5EdBElqjSBZAGkzdAlvESRBvWBBZAdBklojSBZA+h7yw1sESdDpB5RGdjwC0qBO\nkk44sVOnjggSQ1ZAehNGhLcIEq+tWReo9jwC0j8yDpV0GP/v8JH61giSBZAGwczwFkHi9SX0\nV+15BaTWUkF/E32pNYJkAaT/g9XhLYLE61l4U7WHIEmtESQLIJ1yoHjzKQSJ182wVLWHIEmt\nESRzkHa2PFcsIEi8OrXdrdpzO0hNU/vlTwiK5cDb9/Qc9ichs3y8btaZFK3vaQSSDUecBmkJ\n9BAL7gLJhiMOgrQh4zL1rttBmtF76fK+E8Tyc/m/rH+mbzV5q2DVqlVFOpOi9T2NQLLhiNMg\nTYQnxYK7QLLhiIMgzYSB6l2XgxTs+x0hhT3Dz1jifL8R4s9dSAqmaxtZ6Hv6gGTHEadBegom\nigVXgWTHEQdBegI+UO+6HKQtPo6Qat86obx5MO9VU95sct9Cv+ahSxb6nj4g2XHEaZB6wGKx\n4CqQ7DjiIEjXQ5F61+UgFeWE+NfcxUpgmW9DU7chOb4BxeHd35YtW7a+kqV6UqPaO6u1VKgK\nMlsHSDUrXN3oQOsGUsVs3aDa2e+YIyXFxcWl8qPgHH5i33ktyuSHx8X/xL6QU0/sM3EkxE+R\nZVsln/2klvkzElXTEKWykvlJi4QAACAASURBVGinztEdNLtB5g9ZknYy0qqtj1K5n8izqlo/\ndOsgFfYQXvvMkXabvu/+Ltlzy/gKbnTvMKDds7OzB1o4z7ltLKdMiUKWW5o50oV3pMDx/om5\nDj4tMSdmKWi5pYkjAd6Q7DGO928H/J/j54yuRn3IOkgrc5r419xCca9saE/ZrvoeC4TNh2+8\n8cYXdSw1knrV3tltpII/ZKG1IoPWQXbr+qBBa795a8cceZd3ZK500gBpYA6W2fsQYfa+KVIs\nAZ9U8hPmUBvY6dhuNbGCdURx3ClHgrwhbyyRe0gCzLSiDH6Auq4J+hie0tSGmD9kSQYWSAo0\nRqlUWa0funWQNvv2EVLnWxPeKek5OnKdOGCWUrRwWZo+75HsOOLwe6RpyqMXXPUeyY4jzr1H\nGgTTNLUuf48UzOP/U1l6a3hFJnjn++HY4gH8O4ra3BW0SdH6nj4g2XHEYZCGwQSp5CqQ7Dji\nHEhdYJ2m1uUgkWn56zfcPZ6Q+XPIipwla3ntrcorWP37sMGRtxUW+p4+INlxxGGQcpXPxLgK\nJDuOOAZSefvjtLVuB6lpSr/88bwfwwaT2b6wviblI/PuGKNa1bHQ9zQCyYYjDoN0ZqtdUsld\nINlwxDGQlsNN2lq3g2RFFvqeRiDZcMRZkHa1OlsuugskG444BtK7MFxbiyBJrREkM5B+gp5y\nEUG6Dz7T1iJIUmsEyQyk9+AZuYggXZSxSVuLIEmtESQzkOSvx3IIEld24MlULYIktUaQzED6\nN6yVi54HaZH8hRJFCJLUGkEyA6njYUrR8yCNAfq2HwiS1BpBMgGpBK5Ugp4H6U6YQ9UiSFJr\nBMkEJPUX2TwP0rkttlO1CJLUGkEyAWkYvK8EvQ5Saauz6FoESWqNIJmAlAPLlaDXQfoe+tC1\nCJLUGkEyAanTweVK0OsgjYJX6VoESWqNIEUHaVPGpZGg10HqCQvpWgRJao0gRQfpMxgQCXod\npFMP2EnXIkhSawQpOkgF8E4k6HGQ/srsrKtFkKTWCFJ0kLrBkkjQ4yB9DvfoahEkqTWCFB2k\n49qpbtDrcZAK4G1dLYIktUaQooK0Fq5SBT0OUg78oqtFkKTWCFJUkD6Aoaqgx0HqeMhuXS2C\nJLVGkKKCdD98qgp6G6QSuEJfiyBJrRGkqCB1ztysCnobpBnwsL4WQZJaI0jRQCptdaY66G2Q\nhsrPElALQZJaI0jRQJoDd6iD3gbpOvhVX5u2IHGzJk2IqCOCpOq+fZCehXHqoLdBOqoDozZt\nQRoOGh0ihRGkmEC6Flapg54G6Ve4jlGbtiANgfzhKsn37UCQYgFp18GdNEFPgzRR85cAWWkM\n0jesMIIUC0hzIE8T9DRID8MMRi2CJI0UQYoC0hPwriboaZCugD8YtQiSNFIEKQpIl2doH73g\nZZDK23Vk1SJI0kgRJGOQdrQ+XRv0Mki/QA6rFkGSRoogGYP0KfTXBr0M0ttQwKpNB5CaWBoK\nC5lxdmuDkySttfUnptpyxKBDdropRB+Gry2OyeaJozRmPDE1cY5YqpVO8jD8EOuh8aRtamrQ\njwp/I3HN6jfSiW22aYNe/o3UOfNPVm06/EZidgBBcgykxXADFfQwSGUHnsqsRZCkkSJIhiAN\nh9epoIdB+jHylCiNECRppAiSIUgXZqylgh4G6TUYxaxFkKSRIkhGIP2RdR4d9DBIfeE7Zi2C\nJI0UQTICaRT9uFRPg3R2S/r2+aIQJGmkCJIRSJ0ziuigd0Ha0fIcdi2CJI0UQTIAqSjjYl3Q\nuyB9q/2GY0QIkjRSBMkApCdhtC7oXZBG6lYwJSFI0kgRJAOQTmtZogt6F6QeUMiuRZCkkSJI\nbJAWwo36oHdBOrnNLnYtgiSNFEFig3QrzNIHPQvS5syLDGoRJGmkCBITpHWtTirXRz0L0mdw\nn0EtgiSNFEFigvQ4jGBEPQvScOqrwhEhSNJIESQWSFsPP3gTo61nQbpJ9SBdrRAkaaQIEguk\nZ+BxVlvPgnRcO8aFblgIkjRSBIkB0o6jDtQ941GQV0FaD12MahEkaaQIEgOkAngwyGjqWZCm\nwSCjWgRJGimCpAfp94PbrUeQVF17DCYb1SJI0kgRJD1It8JIDkFSde0aWGNUiyBJI0WQdCB9\nkXHGLgRJ3bUORxrWIkjSSBEkGqRNx2V+xSFIqq4VwfWGtQiSNFIEiQape/jBdAhSpGsfwBOG\ntQiSNFIEiQLpOfhnKYcgqbs2EGYa1iJI0kgRJC1IH2Z2CH8xFkGKdO2yDP03SmQhSNJIESQN\nSDNbHzAnXECQlK41tOtkXIsgSSNFkNQgTW7VaqpYQpCUrv0ONxvXIkjSSBGkCEjlj2ceID9M\nC0FSujYRnjWuRZCkkSJICkhFV8Ix38thBEnp2gPwpXEtgiSNFEGSQNr2ZFvoGnmuGIKkdO2i\nzL+Ma90OUtPUfvkTgtqyOqYySau0BcmGIzGAtOGpo+DQV1XfFWgGINlwJB6QGtqcHqXW7SDN\n6L10ed8J2rI6pjJJq7QFyYYjdkHaMvE/B8CBD2xQh5sBSDYciQekIugVpdblIAX7fkdIYU+/\nuqyOqU3SKl1BsuOIHZDWfVFwSSuAk57aoI27HyQ7jsQD0rvwvyi1Lgdpi48jpNq3Tl1Wx9Qm\naZWuINlxxAJIG5d/++Erj97a+TAAyDh94BzdF0DdD5IdR+IBqT/MjVLrcpCKckL8a+5idVkd\n+2zSpElzaySteE6lK0CJq1UbYkVrGkgdK1wXZLZutNm6ltm6Ud0txxz5iHfkJ+ms9ctG8E48\n+0hE99/Fq+8t3XK6du183onHHAKSMo6/7onP/mJ1k+lXHWlkhQMBVtTA2xDTFSLnc8yREG/I\npJVyD3944TljvTAySuVzJ7Tay+px1OEoFvij1NY3RKmsJUGlpJN1kAp7CK995qjL6lj37Ozs\ngXLjKaBRkeUsqVfIckszR7rwjhTIjV+CKGpz2In/+Nf1tz/0/AffrfPr8qRa1p+qa+JIgDck\ne4zc+LFojpjoEifHZ1+Mp+paB2llThP/mluoLqtjvy1btmx9paT1n6s055eaSoaqgqxoZYBU\ns8LVjQ60biBVzNYNqp39jjmycN68eeuqRNVtmfOFWt8vErS8ZN2ardt2V1EKEjoSVogVrCEN\nrHB9PSsaILWWT1xFglKh2ilHQvwUWbZV8tm/4evPjfXVt1EqP5+3nfnjlRRk/pAl1RPmZJRU\nWx+lcj+RZxXDEesgbfbtI6TOt0ZdVsfCsnNZ2uzfI9lxxKmHMevkqvdIdhxx4GHMBnL5e6Rg\n3gJClt7qV5fVMbVJlvre7EGy44g3QLLjiGdBItPy12+4ezwh8+dEyvKWMslS35s9SHYc8QZI\ndhzxLkhNU/rlj+ffig8bHCnLW8okS31v/iDZcMQjINlwxLsgWZGdvjd/kGw44hGQbDiCIFkw\nyVLfESQEyVAIkvW+I0gIkqEQJOt9R5AQJEMhSNb7jiAhSIZCkKz3HUFCkAyFIFnvO4KEIBkK\nQbLedwQJQTKU10Fifthvw9KdzM8ABpit1y8tY4Wr2B8nLF5abqP1OoPWfvVOQhzZvvRPVmY/\n8yO3vy7dxwo3sILlS4tZ4dpaVtTA28B+VnTpaqlg/UOrdhz5a+k2VlY5pz9KZaRrTLGHI8lg\nMkqqqYtSuXfpWrmZflQOg8TUG9mrbLQenb3OvJGi57I322j9ZHapjdZO6vvsj6w3vjs7YLnt\n5uxnrZ/YlrcX9rHeNgZNy/4u5mMvyov50HHZK2I9tDL7YeNKBCk5QpBoIUi2hSAhSHohSLaF\nICFIeiFItrVx3j4brdfPs/4dVULWzWO88TPU2nl1Nlo7qbJ5W603XjnP+vfda+bZYMOWt/OX\nWW8bg7bO2xXzsQti79rGeTEvyzbMW21cmQyQUKi0F4KEQjkgBAmFckCJB4m+9bOxZvl43Wzx\niMl+Ynx7aXZrW+d3WJrumkruqbnsjMX6We32N1ZNjuneY/F1K7acvAJv39Nz2J9GtYkHib71\ns7HeKli1alWRtSOKfVXE+PbS7NZ2zu+wtN01ldxTc9kZi/Wz2u1vjBKz2FZc3YoxJ6/n8n9Z\n/0xfo495JBwk3a2fjVUw3eoRq0d1F/wwvL00s7WN8zssqrvmB0g9NZetsVg+q+3+xiT5x2JX\n8XQr1py8ON9vhPhzFxpUJxwk3a2fjXXfQn+VtSOKZ78n+GF4e2lmaxvnd1hUd80PkHpqLltj\nsXxW2/2NSfKPxa7i6VasOXltHsyj25Q326A64SCpbwcdXU3dhuT4BhRbO2Kj4AfrhtvGrW2d\n32FpumvaWu6pueyMxfpZ7fY3Vm2MaVLH163Ycspa5ttgUJNwkNS3g46uPbeMr+BG9660dETY\nD9YNt41b2zq/w9J017S13FPz89oZi/Wz2u1vrIptUsfXrXhAavq++7tGdQkHSX07aAuq77HA\n0hFhP1g33DZubev8DmmJz+fbQajuWjkg3FPz89sei6Wz2uhvTNK4YlvxdSsOkMqG9jSmN+Eg\n6W79bKIBsywdEfbD8PbSzNa2zu+QgrW1tU10d60cQISemp/f/lisnNVGf2OSxhXbiq9bsYNU\n0nN0lN/miV+1o2/9bKjFA/YTUpu7wtIRYT8Mby/NbG3r/A5L013T1nJPzc9rZyzWz2q3v7Eq\ntkkdX7diBil45/vRqhP/dyT61s+GqsorWP37sMEhS0eIfhjdXprZ2tb5HZa2u2ZSemouG2Ox\ncVab/Y1VMU7quLoVM0grcpas5WX0kdckfLKBuvWzscpH5t0xpsraEaIfRreXZre2c36Hpe2u\nqeSemsvOWKyf1W5/Y1SMkzqubsUM0mxfWF8bVONn7VAoB4QgoVAOCEFCoRwQgoRCOSAECYVy\nQAgSCuWAECQUygEhSCiUA0KQUCgHhCChUA4IQUKhHBCChEI5oOYE0oqsIfzriMyfUt0R1wgd\noZUyR5oTSOS/WavIhtaDUt0NFwkdoZUqR5oVSP5Tz2/scnJtqrvhIqEjtFLlSLMCiSzKuBIv\nYzRCR2ilyJHmBRIZAA+kugsuEzpCKzWONDOQboRLm1LdB3cJHaGVGkeaF0iT4CF4K9WdcJXQ\nEVopcqRZgVR6aB65+ZAdqe6Gi4SO0EqVI80KpBs7cGR725xUd8NFQkdopcqR5gTSZJjCv74O\nM1PdEdcIHaGVMkeaE0golGuFIKFQDghBQqEcEIKEQjkgBAmFckAIEgrlgBAkFMoBIUgolANC\nkFAoB4QgoVAOCEFCoRwQgoRCOSAECYVyQAgSCuWAECQUygEhSCiUA0KQUCgHhCChUA4IQUKh\nHBCChEI5IAQJhXJACBIK5YDSEKRgDd7DF5VsuQekelB0DRkEX8d8Ih9scbBbKZQTjvSQTvCi\n051LiVzsiKtAOvefou6NB6S3IY1AituR86FDWGOc7lxK5GJHXAVSUNlZ+3lZjKdZf2A6gRS3\nI4d2dKw7LpCLHXEpSOaqZTduyO7QMS1BMhfLkT1wlWPdcYFc7IhLQXpc/LU97vJ2l7/9FzxI\nyIPwoxBYDPcR8gKsXPLPzEp+L/fEg7PHBtRneRw++2daghSbI8vgnmT3OpFysSOuBulOOPDS\n4+B6vUkfHHTctbXk1ayscy5uA1erHhhamHkXSWeQ7DoyDUZNv+/2F9ckv/MJkYsdcTNIX8BF\newkZCXqT2j3DN12b1Wk1Ibu7whPKYZWdTqxKZ5BsO/I8tBVWqFoMT0H3EyAXO+IqkCTlSiZ1\nhvD/G+fpTbpAKHeDucJmZ+tDQ/I5eguP4U0nkOJ15E444pPd2986OPywk+YvFzviKpCkpc1H\nRZMask4LV4zQmxT+7+Rv7URzOsMf0ik+Cv/Hk04gxevIpy//KWw+gaOT3vtEyMWOuAok7a/t\nErguXP5Qb9J7fLE68se5peJBW9ud10DSC6Q4HVF0LGxPVq8TKRc74mKQ1kgmTVOZ9JNo0lS+\nWAlHPyNps3jQeDjjGl5t4dJrZiW9+wlQ/I4ouhJ+SlavEykXO+JikGozzgiXX1SZNCNiEjni\nGOoM4yP//7yepE4nVPE7sv9r6T/if8CuJHQ44XKxIy4GiZwK64TyhaJJs4XyXSqTroNFwmbf\niRdpT5S+l3a2HalpdWCFsN3Ygp5QzVMudsTNIH0Ml1USMjq8tPky+Pja2Vkqk5bA0UWEVPng\nae2J0hgk2470gpv4A7ZcCB+koP/Oy8WOuBkkchsccuUJWQPgUX7k7eDUvIvhVJVJfKOM068+\nFK4IaE+UxiDZdoS7Ctpdfl4ruCPZfU+MXOyIq0Eir2W3uWDeRHiWL66+8QiAi/5Qm0S+8XU8\n5II3KI7SGiTbjgRfuf7Iv934WTK7nUC52BH3gKRX2Y7w5nn4UNyv2JrCzrhC6Agt1zjiZpBu\ngrXC5uzW5anuiVuEjtByjSNuBmkqXPSbf31f6JfqjrhG6Agt1zjiZpDIY1nC34Ru2ZvqfrhH\n6AgttzjiapBIyTvDP1iZ6k64SugILZc44m6QUKhmIgQJhXJACBIK5YAQJBTKASFIKJQDQpBQ\nKAeEIKFQDghBQqEcEIKEQjkgBAmFckAOg8SJqiR1HKUQHfCTCiqy3687KEhH6iupgJVUdVZS\nyUc5/Kkt6axVpIZKuEc/NrKXilTX0m1IIx0J7KMC1lLRR0VJVZEQR2pIFZVwXwPdhQZCR2qr\nqcBeEqDbNOpstJRqDxWp0dmopKrUjwpBkg9CkIxSIUiiECQESZ8KQaJTIUimqRAkfSoEiU6F\nIJmmQpD0qRAkOhWCZJoKQdKnQpDoVAiSaSoESZ8KQaJTIUimqRAkfSoEiU6FIJmmQpD0qRAk\nOlUyQZrslwpNU/vlTwhGtpRJ3gHJqiPeAcmqI14GqdhXJZVm9F66vO+EyJYyyTMgWXbEMyBZ\ndsS7IK0e1V02Kdj3O0IKe/rlLW2SR0Cy4YhHQLLhiHdBKp79nmzSFh9HSLVvnbylTfIISDYc\n8QhINhzxLkiEbJRNKsoRHs2Zu1jeCrG3R4wYMd0vKkAa/ZSa6ECQBKhIIKg7SH+U7iALqdbc\n27+fVv3vpgL97lWOcsyRV3hHvpRO2mDJkXoq0qA7iIToSEh3kIVUS++hx9+ftqjfo0oqpxwJ\n8oaMWKB0s4HqVL1+bISONOoOsuSIearvLTjyXBRHYgOpsIfw2meOvBVeu2dnZw+0c7bkqTuY\nK1NuHIp2JlpRHenCO1Lg0BAc1mUWHFGeVhyMdiZa0RwJ8IZkj3FsEI7qFAuOnCs3btQfHxtI\nK3Oa+NfcQnkrxDYXFxdvrRBVTfwVlEJ0oJ5UUZGaAN2mSXdUoJoKVJN6s1S7Djpx0UKtfvqZ\nCixcLh/F+LUdoyMlvCOl0llrSR3Vq0rd2BrIfipSq7ORNOqOog+qMU+1Iev8Qmr8i5fSjvwW\nlFpXGY/fniNNvCHFu6Wz1pFaqlf7dWNrJHTETx9USRroNkHaEQupfoFrfqTGv2QJFfhxnZyK\n4UhsIG327SOkzrdG3iotlGtIN71HmgqDE7VqZ9kRd71Heh1GJWrVzrIj7nqP9BR8kIr3SMG8\nBYQsvdUvb2mT3AXS7fBjwkEyc8RdIP0bihMOkpkj7gLp/MyypIM0n7/cnZa/fsPd4yNbyiRX\ngbT7yPaNiQXJgiOuAmlbm78n7O9Ilh1xFUhrMy5L/qrdsMH81e6UfvnjQ5EtZZKrQPoa+iTs\nD7KWHXEVSBNhSIJBsuCIq0AaDf/Dz9qZpXoAPsbP2mnUE37Ez9pp1BWKESSzVH9vzSFIapW1\n71CLIKn1V6sz8NPfZql+guvx09+a3dmQh5/+1uy+B4MRJLNUT8EYBEmzew98hCBpdrvBXATJ\nLNX5mcUIkmb3+IN2IEjqvZ3tjilHkExSrc24GL/Yp0n1I9yEX+zTpJoJd+E3ZM1SjYZnESRN\nqv/CmwiSJtVdMBNBMkvVFZYhSJpUZ2eVIEjqVOXHHlKKIJmk+qvVGXjPBk2q1RmX4z0bNKnm\nQne8+YlZqvdgMIKkSTUSRiJImlSD4X0EySxVN5iLIGlSXQ6rECRNqtNbbkKQTFLtbHd0OYKk\nTrWp5VkcgqROtQK6cgiSSSphYRNBUqd6Cx7jECR1qmdhNIcgmaQSFjYRJHUqHyzkECR1qosz\nfuMQpOipwgubCJIqVWnbjuUcgqRKVZJ1vpgKQTJOFV7YRJBUqabBPWIqBEnSGHhKTIUgGacK\nL2wiSKpUfWC2mApBknQ9LBZTIUjGqc4QFjYRpEiq3UcdtktMhSCJ2tbmRCkVgmSYSlzYRJAi\nqebArVIqBEnUJHhASoUgGaYSFzYRpEiqgTBRSoUgieoFX0upECTDVOLCJoIUSXVyq7+kVAhS\nWGXtO5RJqRAko1TSwiaCpKRaCtfJqRCksL6A2+VUCJJRKmlhE0FSUg2D1+RUCFJY98FUORWC\nZJRKWthEkJRUF2Suk1MhSGF1arNNToUgGaSSFzYRJDlVceaFSioESVAh3KSkQpAMUk2WFjYR\nJDnVK1CgpEKQBD0O45RUCJJBKnlhE0GSU10DPyupECRB52aVKKkQJHYqZWETQZJSbTng1Egq\nBInXmoxLI6kQJHYqZWETQZJSTYBBkVQIEq9R8EIklatAqhRVQ+orKYXoQIBUU5HaAN2mSX9U\nDRUwTDUAZhinqtGlCsmp9ifEkVripxLuD9JdaCBVVKRONzaiO6pRZ6M+lTi2W2F+TKmqE+KI\nn9RSCasadWMjdMRfR4+NNNBtgvvpsRml6gK/RVLRRzFSyR1kOOIwSNKzat3wMOYTD9wbW6qE\nOOKChzFXHXpkbWypEuRIyh/GXNbqnBhT6UeVtpd2hXCjEsBLO+H1U7hDlQov7TjubXhUlcpV\nl3ZKopSD9DiMVQIIkvDaH2aoUiFIHJcDC1SpECRmqsjCJoIkpup40A5VKgSJKz34uHJVKgSJ\nlUq1sIkghVMtgP+oUyFI3Azor06FILFSqRY2EaRwqkfhHXUqBIm7A2apUyFIrFRXCvcTlYUg\n8S9nttyoToUg7T6q3U51KgSJkWpzq3+oAggSxxVBF00qBOlb6KFJhSAxUqkXNhEkIdXz8KIm\nFYL0MHygSYUgMVKpFzYRJCHVJRm/alIhSKdIX7uXUyFI+lSlBx9TrgogSFxJi3O1qTwP0jK4\nRpsKQdKn0ixsIkh8qrHwuDaV50F6Gl7RpkKQ9Kk0C5sIEp/qRlikTeV5kDpn/q5NhSDpjio/\nRr2wiSDtCW4/sCOVyusg/ZHZmUqFIOmO0i5sIkh7gh/C/VQqr4P0KgynUiFIuqO0C5sI0p5g\nb/iSSuV1kK5VvnYvp0KQdEedqlnYRJD2NBzZfheVyuMg7TvgJDoVgkS3Wa9d2ESQ9vwIvehU\nHgdpBjxEp0KQ6DYvahc2EaQ9j8BkOpXHQeoNc+hUCBLd5hLtwiaCtOfU1lvpVN4GqfzwI3bT\nqRAkKkIvbCJIi+EGXSpvg/Q59NWlQpCoCL2wiSA9CW/oUnkbpHthui4VgkRF6IVNBOm8rPW6\nVN4GqVPbHVQEQaJTbTngFPogj4O0NuNyfSpPg/QD3KJPhSBpAxPhv/RBHgdpNLykT+VpkB6j\nVzERJH2qW+WnIkXkcZC6wh/6VJ4G6ayW1JodgqRLtav9Ebq55m2QNrc6g5HKyyAVZVzJSIUg\nafY/g766VN4G6T0YgiBp9kfAiwiSGUh3w3QESbPfDeYjSJr9y+BXBMkMpOMP2oEgqXd3tjuG\nQ5DUuxtanMNKhSCpd38Anz6Vp0GaCXexUnkYpHEwNKUgNU3tlz8hGC4u8YX1OpklbG7WmZQ6\nkB6Dt5IHkg1HUgdSPsxMHkg2HEkdSDfBjykFaUbvpcv7TggXK1bxWt57IXmrgC8U6UxKHUhn\ntdyYPJBsOJIykMqPPaQ0eSDZcCRlIJW27chMlSyQgn2/I6SwZ+QZS589TUjBdG0jJVGKQCrK\nuIKRKkEg2XEkZSDNhe7MVAkByY4jKQPpI7g3pSBt8XGEVPvWyfvlvcsIuW+hv4phUspAGgGj\nkgeSHUdSBtJgeD95INlxJGUg5cHnKQWpKCfEv+Yulvdff4e/JO42JMc3oDi8f39OTs4zQVEh\n0hSkROhAEwlRkZD+IP1RuoM0qbrApnhTNTrmyG28I68r3aS7wOomHWF0UxdhOKKOnNlyT7yp\nGpxypIE3JGcSs5vsLui7qRutbUcajm5fby2VLUesg1TYQ3jtM0faLe2xh5A9t4yv4Eb3DgPa\np2vXrv9tksT7R0kf0EX0snAaTZs9Lc6PO1XQMUd8vCOjonQ8rm4an0YT2QjXx53K+n8tJo4E\neEO6vmut4/a7aXwaTeQnuCPuVHGBtDKHPxHJLZR23xwtV9T3WKA0Un71pebSbhwMZaVK0KWd\nHUdSdWn3jPCB1aRd2tlxJFWXdg/CJHaqZF3abfbtI6TOt0bcC/RaodQMmEWblCqQboIfWakS\nBJIdR1IF0kUZvyURJDuOpAqkvwtfu0/pql0e/5/K0lulFZklPYVLoMUD9hNSmxvxS0mUEpCE\nhU1WqkSt2tlwJEUglWSdb5AqMat2NhxJEUiL4d8GqZL2d6Rp+es33D2ekPnCJfC4p4VQVV7B\n6t+HDQ7RJqUIJGFhk5UqUX9HsuFIikAaA08ZpErM35FsOJIikJ6C1w1SJe+TDVP65Y/n/Rg2\nmN+5Z1o4Vj4y744xqsVNJVFKQBIWNlmpEvbJBuuOpAik68NfzkriJxusO5IikLIz1xmkws/a\nycXdRx62i5nKs5+129bmRKNUHv2s3dqMi4xSIUhy8RvpfqIIklycBA8apfIoSC/BM0apECS5\nGF7YZKXyLEi94BujVB4F6Sr4xSgVgiQXT5buJ4ogSaWy9h3KjFJ5E6QtB5xumApBkkriwiYr\nlVdB+hxuN0zlTZDeh0GGqRAkqSQubLJSeRWke2GqYSpvgtQdvjdMhSBJJXFhk5XKqyB1arPN\nMJUnQdp56NHlhqkQtkyWtAAAIABJREFUJLEgLWyyUnkUpEK4yTiVJ0H6BPKNUyFIYkFa2GSl\n8ihIQ2GccSpPgtQPZhqnQpDEgrSwyUrlUZDOySoxTuVFkMr/1rbUOBWCFN7KC5usVN4EaU3G\nZVFSeRGkedAtSioEKbwdLy1sslJ5E6RRMCJKKi+C9Ai8FyUVghTe3iItbLJSeROkK2FVlFRe\nBOmMlpuipEKQhI2ysMlK5UmQNrX6R7RUHgSpCLpGS4UgCRtlYZOVypMgvQ2PRUvlQZCeg/9F\nS4UgCRtlYZOVypMg5cAP0VJ5EKR/CV+7N06FIHHqhU1WKi+CVNr2OOVaF0ESUpW0OC9qKgSJ\nExY2b46SyosgTYf+UVN5D6Q34MmoqRAkTljYfDdKKi+C1BdmRU3lPZBugEVRUyFInHphk5XK\ngyDtPqrdzqipPAfS9gNPiJ4KQdIsbLJSeRCkb6FH9FSeA2kKDIieCkHSLGyyUnkQpIfhg+ip\nPAfSbfBV9FQIkmZhk5XKgyCd0uqv6Km8BlLZ4e3LoqdCkDQLm6xU3gNpGVxrksprIH0JvU1S\nIUiahU1WKu+BNBxeNUnlNZDuhw9NUiFImoVNVirvgdQ583eTVF4D6STpa/fGqRAkzcImK5Xn\nQCrO7GyWymMgLYL/M0uFIGkWNlmpPAfSqzDcLJXHQHoCxpqlQpA0C5usVJ4D6Vr42SyVx0D6\np/y1e+NUrgKpTlQ9aayj1EQHGkk9FQnoD9IdFaQPqif1HdpXO5kqIY4ESAOV0B/SjY34qUiD\nrptEf5RubGRf69OowZmn0jsSSZUQRxpIgEqodyRE6EiDzkYS1B2ls5H8lXG5o6n0o3IYpCpR\ntSRQRamJDjSQWipS16A7KKQ7ij6olsyHPiapArZSJcSROlJPJazWja2RVFMRv85GEtQdVUOP\njUyDR0xT0UdFSVWdEEfqiZ9KWKMbW5DQkXr6oGrSqDtKZyN5DUbZT6X7iSmpavSjSoNLu4c0\nC5usVF67tOsF35qm8talXVdYaZrKVZd2SqIkgnSyZmGTlcpjIDUedsRu01SeAqmy1ZnmqbwO\n0hrtwiYrlcdAmg99zVN5CqSPYIh5Kq+D9Lx2YZOVymMgDYTp5qk8BdKtMN88lddBukC7sMlK\n5TGQTjxoh3kqL4G055Bjy7URBEkH0h/K/USNU3kLpMXqr90bpvISSLPhHgupPA7SnMgdVg1T\neQukKfCChVReAulV9Y0IDFN5HqRHTFN5DaQRVMTrIL2i3Ko4WioEyTQVgqRPhSDRqRAk01QI\nkj4VgkSnQpBMUyFI+lQIEp0KQTJNhSDpUyFIdCoEyTQVgqRPhSDRqRAk01QIkj4VgkSnQpBM\nUyFI+lQIEp0KQTJNhSDpUyFIdCoEyTQVgqRPhSDRqRAk01QIkj4VgkSnQpBMUyFI+lQIEp0K\nQTJNhSDpUyFIdCoEyTQVgqRPhSDRqRAk01QIkj4VgkSnQpBMUyFI+lQIEp0KQTJNhSDpUyFI\ndCoEyTQVgqRPhSDRqRAk01QIkj4VgkSnQpBMUyFI+lQIEp0KQTJNhSDpUyFIdCoEyTQVgqRP\nhSDRqZIGUtPUfvkTgmJ5lo/XzdqYyiSPgGTDEY+AZMMRb4A08Bd9bEbvpcv7ThDLbxWsWrWq\nSBtTmZSGIMXpSBqCFKcj3gCpBZz8dIk2FOz7HSGFPf3hnYLp+pjKpDQEKU5H0hCkOB3xBkjc\nO10y4YLXdqlCW3wcIdW+deGd+xb6q+iYyqQ0BClOR9IQpDgd8QZIvEpfvxiyrp24X94vygnx\nr7mLhXJTtyE5vgHFmljZjh079uwTVUX8+yiF6EA92U9FquvpNk26owJVVOBbeMRCKvoofaqQ\nfJTxOwK7jpTyjsinryG1VMKKoG5spJKK1NbRbUgjHWmgD5oKI51JJR+1n22HfUeaeEN2yD/1\nWlJDJazUja2R0JE62sZK0kC3CVZQgVfhfQup6KNqdT8xJRXDkaiLDSvPBmjdo1DcKewhvPaZ\nI7zuuWV8BTe6d6U61j07O3tgtLMlRoXwX2dPGIpWacuRLrwjBc52zoo+gZecPWEwWqUdRwK8\nIdljnO2cFY2DKc6esFEfMgZpx5tXt4ATH723HbwZ3l+Z08S/5hYqDep7LFDHXh46dOiEelEN\nJFhPqYkOBEmAijToD9IdFWqgAgvgMYdTOebIM7wjH8sJSSOVMKAfm66bjbpukpDuKPqgGfA/\nZ1I57kgjb8jQb+SEhP5RBvRjI3QkqLNR70gTPbY3YGIMqRqNU/n1VhiAtHH0xRlw6pOr+GLF\nRaeHQ5t9+wip862JNBowSxdTriHT7j1SnI6k4XukOB3xxnskgLMK1krlIceHN8G8BYQsvTUM\n4+IB/FVibe4KdUxtUhqCFKcjaQhSnI54A6QR6yPlkHSNPC1//Ya7xxMyfw6pyitY/fuwwSEl\nRpmUhiDF6UgaghSnI94AiaWmKf3yx/NvxYcNJqR8ZN4dY6oiMcqkNAQpTkfSEKQ4HfEuSFak\nJPIESDYc8QhINhxBkCyYhCDRjiBItCMIkgWTECTaEQSJdgRBsmASgkQ7giDRjiBIFkxCkGhH\nECTaEQTJgkkIEu0IgkQ7giBZMAlBoh1BkGhHECQLJiFItCMIEu0IgmTBJASJdgRBoh1BkCyY\nhCDRjiBItCMIkgWTECTaEQSJdgRBsmASgkQ7giDRjiBIFkxCkGhHECTaEQTJgkkIEu0IgkQ7\ngiBZMAlBoh1BkGhHECQLJiFItCMIEu0IgmTBJASJdgRBoh1BkCyYhCDRjiBItCMIkgWTECTa\nEQSJdgRBsmASgkQ7giDRjiBIFkxCkGhHECTaEQTJgkkIEu0IgkQ7giBZMMkpkJa+/QqlN1+n\nAgO9BdLCNXTE6yDN2UC3QZDo2V16GFjQU6ap0gekjQecTR/lcZBWZl5Ft0GQ6Nk9E3ImUPpo\nEhWY9EmZaar0AelNgF+okMdBehZalFAhBIme3fnwLX2U7j2SlVTpA9JNAM9SIY+DdDHAW1QI\nQaJmd/mx7XSn8TZIO9oekXEx1cbbIK3POgp8VBsEiZrdc6GX+aqdp0CaBg93zizWxrwN0hgY\nccJBO7QxBIma3YNhOoKkUR/44XkYo415G6TrYd2DME0bQ5Co2X16y70Iklq7jzyscQ1cr23j\naZC2tTmRzIU+2jbpAFKjqCAJNVIidCBEglQkqD2oBP5NmuijmnQHOZFKOEg+qiFZjujHpu+4\n9qBF0Ic0ndKmUnsUPbaPYXT8qXgp5ifGEcYPxX43P4EhpLHDUYHoox0Lk+JP1ahyJKAflcMg\n7RG1n9TtoRSiA35SSUWq/Jrd5+DlUJA+qn4/FXAklXCQfNS+hDhSTWqohHt1YwuQfVSkWju2\ngTCJND4AUzTBhgrqoCkw0jRVvVkqXqRRKjD+/3XAkRpSTSWsaKC70EDoSK3Wxl7wLQncCt9q\ngo302F6F9yyk2hs9FW8jCUglu081ty/lV58Dl3YXZ/xm4SNCXrq0O7nVX6Txa+ilCXr50q6s\nfYdyEpgID2napMOlnZIofpBKss638lk7D4G0BK7jZ/fuI9vvUke9DNLncDv/a2LrASdp2iBI\nmtk9Bp5CkDSzexi8Jszu2+ELddTLIN0LU4UPrV4HS9VRBEkzu6+HxQiSZnZfkLlOmN1T4T51\n1MsgdWqzTQDpNRimjiJI6tm9rc2Jlr5G4R2QijMvDM/uHW07qtt4GKRCuCn8NYo/si5Qt0GQ\n1LN7EjyIIGlm98tQIM7um6BQFfYwSENhnPh9pAszf1eFEST17O4F3yBImtl9tfDBb2F2j4PH\nVWEPg3ROVokIUgG8ogojSKrZXda+QxmCpJ7dWw44jRNn94YW56raeBekNRmXSd+QXQ7XqNog\nSKrZ/QXcziFI6tk9AQZx0uy+FIoice+CNEoYqPhV81Nb/RWJI0iq2X0fTOUQJPXszoXvOGl2\nvwCjInHvgnQlrJJBGgQTInEESTW7O7XZxiFIqtm989CjyjlpdhfBlZE2ngVpU6t/cDJI30Fu\npA2CFJndwsImhyCpZvencKewEWf3P1puVCo8C9Lb8Bgng1R+7CGlSgWCFJndwsImhyCpZnd/\n+FjYiLP7UXhbqfAsSDnwA6fcjusO+FSpQJAis1tY2OQQpMjsLv+b+D1QcXYvgByljVdBKm17\nnHCtK4E0A/orbRAkZXaHFzY5BCkyu+fDzeGtNLuPj3y92qsgTYe7hY0EUunBx5TLNQiSMrtH\nSXMBQZJLQ+Dd8Faa3f1hhlzjVZD6wmfCRr7T6n9ggVyDICmzO7ywySFIkdl9prS8IM3uWXCH\nXONRkHYf1W6nsJVBegceldsgSPLs3hxe2OQQJGV2F0EXsSDN7l2HHrFbqvIoSN9Cj/BWBmlz\nqzPlNgiSPLvFhU0OQVJm9/PwoliQZ3cP5d6ZHgXpYfggvFVuot8FVkpVCJI8u8WFTQ5BUmb3\nJRm/igV5dn8AD0tVHgXpFOlDQQpIL8LzUhWCJM1uaWGTQ5Dk2V3S4p9SRJ7dWw44RYp4E6Rl\ncK1YUEBak3GJ1AZBkmb3dOVvAgiSuB0LT0gRZXZfAz+LBW+CNBxeFQuR5yOdmyXdTR9BkmZ3\nX5glH4QghfV/sEiKKLP7FXhaLHgTpM7yV/kiID0OY8UCgiTObnlhk0OQpNm9/UDly+XK7C7O\n7CwWPAmSMnoVSIvgRrGAIImzW17Y5BAkaXZ/CPfLkcijLztnrgtvPQnSqzBcCqgefXlS+BsD\nCJI8u+WFTQ5BkmZ3b/hSjkRAkt8leBKka+V3iGqQ7ocPw1sESZzdp0S+7YggCa+7j4jcEjIC\nkrxu5UWQImuWapC+hN7hLYIUnt3KwiaHIImz+yu4TYmonmou/YfjRZAif0VTg1R2ePvwY1AR\npPDsVhY2OQRJnN0DYIoSUYH0kHgJ7EWQIp/rUIPE9YKvhI3bQWqa2i9/QlAsB96+p+ewPwmZ\n5eN1s86keEDqrLpHmctBsuFIPCCd1HqrElGBNEdclHEVSDYciQMk1ScNNSBNhgHCxu0gzei9\ndHnfCWL5ufxf1j/Tt5q8VbBq1aoinUlxgBRZ2ORcD5INR+IAaRHcEImoQJL+TOAqkGw4EgdI\ns6CvElCDtL3NCcLG5SAF+35HSGFPf9gL32+E+HMXkoLp2kZKophBiixscm4HyY4jcYD0JLwR\niahAkr6R4yaQ7DgSB0j9YboSUIPE3QA/ca4HaYuPI6Tat04obx7Me9WUN5vct9BfxTApDpAi\nC5uc20Gy40gcIJ2XtT4SUYMkfkfUTSDZcSQOkFTfD9aC9AY8ybkepKKcEP+au1gJLPNtaOo2\nJMc3oDi8O3fWrFlLqkXVkUA1pSY60EBqqYi/obq6rPXf1QeF6KMa66iAtVT0UUIq6iD5qBrH\nHPmSd2SlnJDUUwlr9GMjNVSknh/bhoxLVRESjJT3tO1YxR9F2zgNRllIRR9Vr7ORyEc55kiI\nN2TWWjkh8VMJa4NUoDpI6EiAt3ExdFONjTRGdra2yOZfQ7SNr8OEGFLV635iSiqGI9ZBKuwh\nvPaZI+02fd/9XbLnlvEV3OjeYUC7Z2dnD7R8NiN9Ao/HfY74FLLc0syRLrwjBXH35014xaiq\nBxQxop/AS3En1ShouaWJIwHekOwxcfenAKYaVV2RsZ0RHQdT4k6qUaM+ZB2klTlN/GtuobhX\nNrSnbFd9jwXCxpnfSL3gB/VBrv6NZOaIM7+RroZfVRH1b6Tq8fCEu34jmTji0G+ks1tuV41N\n/RupeiS85vrfSJt9+wip860J75T0HB25ThwwSykq15Axvkfa1T6ysMm5/T2SHUdifo+0udUZ\n6oj6PRK3qdVZ7nqPZMeRmN8jFWWo7jOrfY/ErYCurn+PFMzj/1NZemt4RSZ45/vh2OIB+wmp\nzV1BmxQzSJ+pFjY5t4Nkx5GYQXoPHlFHNCBxV8AqV4Fkx5GYQRqhvvM5BRJ3RstNbgeJTMtf\nv+Hu8YTMn0NW5CxZy2tvVV7B6t+HDY68rVASxQjS3aqFTc7tINlxJGaQusE8dUQLknDbMjeB\nZMeRmEG6TP0sDhqkR3hm3A5S05R++eN5P4YNJrN9YX1Nykfm3TFGtbipJIoRJPXCJud6kGw4\nEitIO9tFbnwoSAuScCNNV4Fkw5FYQdrQ4hx1gAJpHnRzPUhWpCSKDaQfVLfiDR/kbpBsOBIr\nSDOhnyaiBUm4tbOrQLLhSKwgjYOh6gAFUvnfDi5FkPyPqW4OHz7I8yDlwyeaCAXSUBjnNZC0\nT9ClQeLugpkIkl/9uJLwQV4HqUb9uBJBFEg/wk0eA2mP9pnuOpBmQj6CVKJZ2OQQpOpCuEUb\noUDiOrWp8BZIM+E+TYAGaeehRzd4HqSXNAubHIJU/RiM10ZokO6F2d4CqS98oQnQIHHd4WfP\ng3SlZmGTQ5Cqz2j1pzZCg/Q53OUpkKqPinztPiwdSO/DE14HaYt2YZNDkNbAVVSEBqms/RH0\nadIapPnQSxvQgbSl1ZleB+kd7cImhyC9AC9RERokrlfkW9eS0hqkQTBJG9CBxF0Fy6mI10Dy\naRc2OQTpXxm/UREdSJNgIBVJa5BOabNVG9CD9BI8S0U8BlJp2066g7wN0h9Znek2OpC2HXgS\nFUlnkBbD/1ERPUhrMy6mIh4DaSo8qDvI2yC9rvu/VQ8SdyMs1gbSGaSn4C0qogdJuQetIo+B\ndDt8rzvI2yD9W3oCqEp6kN6Bp7SBdAbp/MxNVIQB0vMwRhvwFki7jzysmm7jbZC2tTnJeHYr\n2pGVrQ2kMUhrMy6h5wgDpDVwvTbgLZC+gd762e1pkCbBwxZAClxMrUikMUgvwUgLIDX+vbV2\nRcJbID0IUxEkzX4vmGcFpOeoNfI0Bukq+NUKSAOpNXJvgfT31rsQJPVuWfsOlVZAWkX91TZ9\nQdrS6vRaKyDNof5q6ymQFsP1jNntZZA+h7wos1tRYN/p2s8RpS9I78NgSyBxR2o/R+QpkJ6C\nMQiSBqR74SNrIA2C99WB9AWpO8y1BNLe2+FzdcBTIJ2fuQ5B0oB0fJtt1kD6HrqrA2kL0s52\nR5dbA2kq3KsOeAmktRkXsWa3h0H6EW6KNrsVBfaVa7/9l7YgzYR8zhpIpdpv/3kJpJfgGQRJ\nA9JQGGcRJE77ffS0BekumGkRJE77fXQvgXQV/IIgaUA6J6vEKkjaO6SkK0jCfU2sgqS9Q4qH\nQNrS6nTm7PYuSMKdtqyCpL1nV7qCJNxpyypI2nt2eQik92EwgqQBSbj3o1WQtHeRTFeQhHs/\nWgVJexdJD4HUHeYiSBqQhLsRWwZJc1/jdAVJuBuxZZA09zX2Dkg7Dz26HEFSgxS+P75lkDR3\n2k9TkML3x7cMkuZO+94B6RPI5xAkNUhvw2OcdZC4rrBMCaQpSM/BaM46SJz6FoneAakfzOQQ\nJDVIOfADZwOk/8FzSiBNQRK/dm8ZJPVNez0DUnhhE0FSgVTa9jhhHc4ySGsz/qUE0hOkkhbn\nCRvLIKlvI98MQdojaj+p20MpRAf8pFIuzoduwqbKrzsoSEfq91MBm6kkMVLJR+1LiCPVpIZK\nuFc3tgDZJxdnwD3ho3RjI410pKFCeD0vq0QOTIGRpqnqI6nkDhqnYkwbBxypIdVUwooG3diI\nUnwDnhQ2tbSN+0iAPqoxPLZOB5XKgVfhPQup9lIRXaq9Sqr9+lE5DFJQVIg0BSkROtBEQnLx\nKfgofJT+IP1RISpgM5V8lHEqxvNBHXGE7kJQ14WmSMfvhnkG3dQfFT7xczBeDsyE0bqjoqSS\nO2icqsENjuTAmvBRuoMYjoRfH4Sv5MBYmGwnldxB41QMR1xxaRde2MRLu8il3e6j2u0UtpYv\n7bhFcIMcSMtLu+1tTghvLV/acbMiD39shpd2SiI7IIkLmwhSBKQ5cGt4ax0kLvL16rQEaTI8\nEN5aB2nXYcrjiL0CkriwiSBFQHoIJoa3NkAaAFOkQFqC1Au+Dm+tg8T1UO5B6xWQ5PuJIkgy\nSKe0+iu8tQHSV3CbFEhHkMoOb18WLtgA6QN4WAp4BCRpYRNBUkBaBteKBRsg7T5C/np1OoL0\nJfQWCzZA2nLAKVLAIyC9AU+KBQRJAmk4vCoWbIDE9YYvxUI6gnQ/fCgWbIDEXQs/iwWPgHQD\n/CQWECRpBij33LUD0odwv1hIR5BOarNNLNgB6VUYLha8AZK8sIkgySAVZ8r3zrcD0vYDpa9X\npyFIi+BGKWIHJMVHb4A0GQZIEQRJnAGvwNNSxA5I3P/BovA2DUF6HMZKETsg8b/Zfw9vvQFS\nL/hKiiBI4gy4Rr62twfSWHgivE1DkM7NKpEitkCS32t6AiRlYRNBkkCKrDbZA6mkxT/D2/QD\naU3GJXLEFkjy6qcnQFIWNhEkCaTI3z/sgcRdkvGrsEk/kF6E5+WILZDkv8d5AiRlYRNBkkCK\n/EXeJkjPw4vCJv1A6gIr5Yg9kB6GD4SNJ0BSFjYRJBGkXYcqnxGzCVIRdBE2aQfS5lZnKhF7\nIH0LPYSNF0CKLGwiSCJIs+AOJWIPJO7M8Ner0w6kd+BRJWIPJOlT9F4AKbKwiSCJIPWHGUrE\nJkhD4B0uDUH6DyxQIvZA4vrCLM4bIEUWNhEkEaSOB+1QIjZBmg//4dIPpNKDVbe/tAnSdOjP\neQIk1cImghQGaYHqXgN2QSr/mwBhuoE0IwyDJJsgife+8ABIqoVNBCkM0qOqu9/YBYm/LPw4\n/UC6Az6NRGyCJN6NyQMgqRY2EaQwSOr7sdkG6VO4M+1A0j60xi5I4fsDpj9I6oVNBEkAqQhU\ndwi1DdLOQ48qTzeQvoNcVcQuSJta/cMLIKkXNhEkAaQX1Pestg0SlwvfpRtIg2CCKmIXJO5K\nWOUBkNQLmwiSANKl4sd8JNkGaQIMSjeQTpW+di/KNkjCUz3SHiTNwiaCxIO0ocW56ohtkLYc\ncFqagbQcrlFHbIMkPGcq7UH6WL2wiSDxII2Dx9UR2yBxV8Mv6QVSAbyijtgGSXjyYdqDdKd6\nYRNB4kHSPvs0BpBehoL0AulC6ct5kuyDNBTGpTtI+7RP40aQyE7t07hjAKk488K0AumPrAs0\nEfsgFcJN6Q7SPM3CJoJUTz6C+zQR+yBxF2S+nE4gvQbDNBH7IHGd2ryQ5iAN1ixsIkj1JA++\n0ERiAGkYXJNOIF0HSzWRGEC6F65Nc5BObfWnJuJ5kELKTR4lxQDSEjggjUCqaf13bSQGkD7n\nHXEVSE1T++VPCGrL6pjKJEsgbdQubDZDkGw4Ygmkn6CXNhIDSNzJkEKQbDhiCaRP4SFtJAaQ\nytqDu0Ca0Xvp8r4TtGV1TGWSJZBGaxc2myFINhyxBNKjMFkbiQWkgakEyYYjlkDqA3O0kRhA\n4nq5C6Rg3+8IKezpV5fVMbVJlkC6VLuw2fxAsuOIJZBOVR7NIikWkOakECQ7jlgByd8h8rV7\nUbGANMldIG3xcYRU+9apy+qY2iQrs3sbtbDZ/ECy44gVkFbD9VQkFpB2H5U6kOw4YgWkudCH\nisQC0rYDXQVSUU6If81drC6rY2+PGDFiul9U4Of+/SjdQwf+Dc/7tQoEqYC/qYmOBAP0QaRR\nd5TuIKI7Kkoqxxx5hXfkS+mkDXPNHbkC3qE61aAbGwnRkVA9FegH/7PgCH1UtFROORLkDRmx\nQE74qc6Ru+nAhTCL6lRjAxWot+DITTCRPkp/EKEjjbQj9dEcsQ5SYQ/htc8cdVkd656dnT1Q\nbjwFzNWyxHLuZCpkuaWZI114Rwrkxi9ZcOSg3U4MYD5MdeI0EQXNm0gycSTAG5I9Rm78mAVH\nOliHOIqmwTwnThMR4znD1kFamdPEv+YWqsvqWNmOHTv27BNVVV1cRGkjHfhj9/59WlXXU4F9\nTSE6EqiiAlXET7fRHVRP6KP0qULyUdYvZMwcKeUdkU9fU/k7Nf7VG2hH1u+ppDpVW0d3kzTS\nkQb6oJoy+qiKIH1QgFhIJR/FeIZ3bI408YbskH/qtXvXUuP/VefIhgq6U3W1VKCSNNBtgvRR\ntWU19FE6GxuJ7ig6VYWSKq6nmm/27SOkzrdGXVbHwlKuIW09jFlSc3uPZMcRe0/skxXLeySL\nqRLyHsmOI/YefSkrlvdIXLWlVElbtctbQMjSW/3qsjqmNskbINlxxBsg2XHEsyCRafnrN9w9\nnr8GnxMpy1vKJG+AZMcRb4BkxxHvgtQ0pV/+eP6t+LDBkbK8pUzyCEg2HPEISDYc8S5IVqQk\n8gRINhzxCEg2HEGQLJiEINGOIEi0IwiSBZMQJNoRBIl2BEGyYBKCRDuCINGOIEgWTEKQaEcQ\nJNoRBMmCSQgS7QiCRDuCIFkwCUGiHUGQaEcQJAsmIUi0IwgS7QiCFE3VorbOLKqmFKADy2aW\nUpFaP93my2/oSH0tFdg2c5VpqhUzd5im+uIrqVCTEEc2zPzdtJs/zeSoSJ2umzPn0ZH6Giqw\naeZa01SLLaT6dK5UqE2II+tmbqAS1tTTXVgwcz/dzToqsHdmoW60tCPFM0sspKo0S7Vv5o9y\nlX5UDoMkaUX2ONM2L2b/Ydrm2hzTJqsin8s31EvZv5u2uf5G0ybx6Pvsj0zb/Dfb/GsU2Xea\nNpmfPcW0zRPZpaZtLuxj2iQeTcv+zrRN/2zGFxa02pv9iOlpPs7+xrTNvdn1Zk0qsx82rkSQ\nJCFItBAkSggSgkQLQaKFICFIlBAkWs0XpNpi8ymxq9j8a8QlmxxJVVbMeHdIacNG0ybxaH+x\n+WrgjuIG0zbFfzmSqtRCqj/+NG0Sj/YWm3/zdktxk1mTxuLtpqfZV8xYZqO0tdj0HgPB4m3G\nlYkBCYXymBAkFMoBIUgolANKHEiTo74Fom8IHdNJeAXevqfnsOgX82XP98572fyv81vurjZt\nE5/QEVpJccSCIQ44kjCQin1V0arpG0LHdBJez+X/sv6ZvtF+4E0PP75m0X3DzVI1DDTNFafQ\nEVrJccTcECc+tV7/AAADBElEQVQcSRBIq0d1jzo+3Q2hYzkJL873GyH+3IVRmmwVbgc1L8ds\ncXP8/YmdNugIrSQ5YsEQJxxJEEjFs9+LOj7dDaFjOQmvzYN5n5vyZkdpsvtL/mVpT5NLhF/v\nXJXYaYOO0EqSIxYMccKRhF3abYw6PvVNomM+iaxlvg3RG/w6+87PoreounOVtVxxCB2hlTxH\nTA2J25EUgaS+SXTMJxHV9H33d02avHXfbQujtxj1jsUpGofQEVrJcsSCIXE74jhIS3w+3w5i\nNj71TaKjyIJJZUN7mlnNa7FwmWCsBfcHEjdt0BFaSXbEmiFxOuI4SMHa2lrBgOjj090Qmi1z\nk0p6jjb5+EdJ+NqgR9Sfx1u+sF43SRab0BFayXXE3BAnHEnRpZ3uhtCxnEQ4z53vm3Xk+96N\n/PVtzupobfZu3bp1kW/dHrNzxSV0hFZSHLFgiBOOpAgk3Q2hYzoJIStylqzlFe1Tmvv7vrKh\neBj/ezneXPEKHbGZwBlHLBjihCOpAom+IXRMJyFktvj79utobXY8m9d3dLlZqpRPG3SEljOO\nWDHEAUfws3YolANCkFAoB4QgoVAOCEFCoRwQgoRCOSAECYVyQAgSCuWAECQUygEhSCiUA0KQ\nUCgHhCChUA4IQUKhHFBzAmlF1hD+dUTmT6nuiGuEjtBKmSPNCSTy36xVZEPrQanuhouEjtBK\nlSPNCiT/qec3djnZ4QfINWuhI7RS5UizAoksyrgSL2M0QkdopciR5gUSGQAPpLoLLhM6Qis1\njjQzkG6ES02fmPP/7d2hDUJBEEXRLYAQBF1hKIAaqAWFBktbgKKIT7BrMC+Z3fxzKpi85OpZ\nF4v0ahaZK6RbO7dr9RFDsUivaJGpQnrvTstx+6o+YyAW6VUtMlVIh/1neW7+/5VdD4v0qhaZ\nKaR7+30ZvrRH9SHDsEivbJGZQoJhCQkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAh\nQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQ8AUzg+7PiysYagAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "library(ggplot2)\n", "library(patchwork)\n", "\n", "data1 <- data.frame(x=c(-10.,0.,0.,10.,10.,20.,20.,30.,30.,40.,40.,50.,50.,60.,60.,70.,70.,80.,80.,90.,90.,100.,100.,120.,120.),\n", " y=c(0.,0.,0.1,0.1,0.19,0.19,0.25,0.25,0.34,0.34,0.45,0.45,0.5,0.5,0.57,0.57,0.61,0.61,0.63,0.63,0.65,0.65,0.67,0.67,0.67))/0.67\n", "data2 <- data.frame(x=seq(-10, 10, length.out = 100),\n", " y=exp(seq(-10, 10, length.out = 100))/(1+exp(seq(-10, 10, length.out = 100))))\n", "data3 <- data.frame(x=c(-1.,0.,1.,2.),\n", " y=c(0.,0.,1.,1.))\n", "data4 <- data.frame(x=c(-1.,0,1,2,2,3,4),\n", " y=c(0.,0.,0.4,0.4,0.6,1.,1))\n", "data5 <- data.frame(x=c(-1.,0,1,2,2,3,4),\n", " y=c(0.,0.,0.4,0.,0.6,1.,1))\n", "data6 <- data.frame(x=c(-1.,0,0,1,1,2),\n", " y=c(0.,0.,0.4,0.4,1.,1))\n", "\n", "f1 <- ggplot(data1,aes(x,y)) + geom_line() + labs(title = \"Figure 1\") + theme(plot.title = element_text(hjust = 0.5))\n", "f2 <- ggplot(data2,aes(x,y)) + geom_line() + labs(title = \"Figure 2\") + theme(plot.title = element_text(hjust = 0.5))\n", "f3 <- ggplot(data3,aes(x,y)) + geom_line() + labs(title = \"Figure 3\") + theme(plot.title = element_text(hjust = 0.5))\n", "f4 <- ggplot(data4,aes(x,y)) + geom_line() + labs(title = \"Figure 4\") + theme(plot.title = element_text(hjust = 0.5))\n", "f5 <- ggplot(data5,aes(x,y)) + geom_line() + labs(title = \"Figure 5\") + theme(plot.title = element_text(hjust = 0.5))\n", "f6 <- ggplot(data6,aes(x,y)) + geom_line() + labs(title = \"Figure 6\") + theme(plot.title = element_text(hjust = 0.5))\n", "(f1 + f2 + f3) / (f4 + f5 + f5) " ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.2.1" } }, "nbformat": 4, "nbformat_minor": 5 }